The unsteady pressure and boundary layers on a turbomachinery blade row arising from periodic wakes due to upstream blade rows are investigated in this paper. A time-accurate Euler solver has been developed using an explicit four-stage Runge–Kutta scheme. Two-dimensional unsteady nonreflecting boundary conditions are used at the inlet and the outlet of the computational domain. The unsteady Euler solver captures the wake propagation and the resulting unsteady pressure field, which is then used as the input for a two-dimensional unsteady boundary layer procedure to predict the unsteady response of blade boundary layers. The boundary layer code includes an advanced k–ε model developed for unsteady turbulent boundary layers. The present computational procedure has been validated against analytic solutions and experimental measurements. The validation cases include unsteady inviscid flows in a flat-plate cascade and a compressor exit guide vane (EGV) cascade, unsteady turbulent boundary layer on a flat plate subject to a traveling wave, unsteady transitional boundary layer due to wake passing, and unsteady flow at the midspan section of an axial compressor stator. The present numerical procedure is both efficient and accurate in predicting the unsteady flow physics resulting from wake/blade-row interaction, including wake-induced unsteady transition of blade boundary layers.

1.
Abu-Ghannam
B. J.
, and
Shaw
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient and Flow History
,”
Journal of Mechanical Engineering Science
, Vol.
22
, No.
5
, pp.
213
228
.
2.
Addison
J. S.
, and
Hodson
H. P.
,
1990
, “
Unsteady Transition in an Axial-Flow Turbine: Part 1—Measurements on the Turbine Rotor, Part 2—Cascade Measurements and Modeling
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
112
, pp.
206
221
.
3.
Chen, J. P., and Whitfield, D., 1993, “Navier–Stokes Calculation for the Unsteady Flow Field of Turbomachinery,” AIAA Paper No. 93-0676.
4.
Doorly
D. J.
, and
Oldfield
M. L. G.
,
1985
, “
Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade
,”
ASME JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER
, Vol.
107
, pp.
998
1006
.
5.
Dorney, D. J., 1992, “Numerical Simulations of Unsteady Flows in Turbomachines,” Ph.D. Thesis in Aerospace Engineering, Pennsylvania State Univ., University Park, PA.
6.
Evans
R. L.
, and
Yip
R. S. K.
,
1988
, “
An Experimental Investigation of Unsteady Wake-Boundary Layer Interaction
,”
Journal of Fluids and Structures
, Vol.
2
, pp.
313
322
.
7.
Fan
S.
,
Lakshminarayana
B.
, and
Barnett
M.
,
1993
, “
A Low-Reynolds-Number K–ε Model for Unsteady Turbulent Boundary Layer Flows
,”
AIAA Journal
, Vol.
31
, No.
10
, pp.
1777
1784
.
8.
Fan, S., and Lakshminarayana, B., 1993, “A Simplified Reynolds Stress Model for Unsteady Turbulent Boundary Layers,” AIAA Paper No. 93-0204.
9.
Giles
M. B.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
AIAA Journal of Propulsion and Power
, Vol.
4
, No.
4
, pp.
356
362
.
10.
Giles
M. B.
,
1990
, “
Non-reflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA Journal
, Vol.
28
, No.
12
, pp.
2050
2058
.
11.
Giles
M.
, and
Haimes
R.
,
1993
, “
Validation of a Numerical Method for Unsteady Flow Calculations
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
, pp.
110
117
.
12.
Ho
Y.-H.
, and
Lakshminarayana
B.
,
1993
, “
Computation of Unsteady Viscous Flow Using an Efficient Algorithm
,”
AIAA Journal
, Vol.
31
, p.
2232
2232
.
13.
Hodson
H. P.
,
1985
, “
A Blade-to-Blade Prediction of a Wake-Generated Unsteady Flow
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
337
344
.
14.
Hodson, H. P., 1991, “Aspects of Unsteady Blade-Surface Boundary Layers and Transition in Axial Turbomachines,” VKI-LS-1991-06, in: V KI Boundary Layers in Turbomachines.
15.
Jorgensen, P. C. E., and Chima, R. V., 1988, “An Explicit Runge–Kutta Method for Unsteady Flows,” AIAA Paper No. 88-0049.
16.
Korakianitis
T.
,
1992
, “
On the Prediction of Unsteady Forces on Gas Turbine Blades, Part 1: Description of the Approach; Part 2: Analysis of the Results
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
114
, pp.
114
131
.
17.
Korakianitis, T., Papagiannidis, P., and Vlachopoulos, N. E., 1993, “Unsteady-Flow/Quasi-Steady Heat Transfer Computations on a Turbine Rotor and Comparison With Experiments,” ASME Paper No. 93-GT-145.
18.
Kunz
R. F.
, and
Lakshminarayana
B.
,
1992
, “
Explicit Navier–Stokes Computation of Cascade Flows Using the k–ε Turbulence Model
,”
AIAA Journal
, Vol.
30
, No.
1
, pp.
13
22
.
19.
Lam, C. Y., 1990, “Turbulent Boundary Layers Under Small Harmonic Progressive Oscillations of the Free Stream,” Aeronautical Journal, Aug.–Sep., pp. 251–259.
20.
Lewis
J. P.
,
Delaney
R. A.
, and
Hall
E. J.
,
1989
, “
Numerical Prediction of Turbine Vane-Blade Aerodynamic Interaction
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
111
, pp.
387
393
.
21.
Liu, J., and Sockol, P., 1989, “Unsteady Euler Cascade Analysis,” AIAA Paper No. 89-0322.
22.
Liu
X.
, and
Rodi
W.
,
1991
, “
Experiments on Transitional Boundary Layers With Wake-Induced Unsteadiness
,”
Journal of Fluid Mechanics
, Vol.
231
, pp.
229
256
.
23.
Martinelli, L., 1987, “Calculation of Viscous Flows With Multigrid Methods,” Ph.D. Thesis, MAE Department, Princeton University, Princeton, NJ.
24.
Mayle
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
113
, pp.
509
537
.
25.
Menendez, A. N., and Ramaprian, B. R., 1989, “Experimental Study of a Periodic Turbulent Boundary Layer in Zero Mean Pressure Gradient,” Aeronautical Journal, June–July, pp. 195–206.
26.
Patel
M. H.
,
1977
, “
On Turbulent Boundary Layers in Oscillatory Flow
,”
Proceedings of the Royal Society, London, A
Vol.
353
, pp.
121
144
.
27.
Pfeil, H., and Herbst, R., 1979, “Transition Procedure of Instationary Boundary Layers,” ASME Paper No. 79-GT-128.
28.
Power
G. D.
,
Verdon
J. M.
, and
Kousen
K. A.
,
1991
, “
Analysis of Unsteady Compressible Viscous Layers
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
133
, No.
4
, pp.
644
653
.
29.
Rai, M., 1989, “Three Dimensional Navier–Stokes Simulation of Turbine-Stator Interaction, Part 1—Methodology; Part 2—Results,” Journal of Propulsion, May–June, pp. 305–311.
30.
Rodi
W.
, and
Scheuerer
G.
,
1985
, “
Calculation of Heat Transfer to Convection-Cooled Gas Turbine Blades
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
620
627
.
31.
Schmidt
R. C.
, and
Patankar
S. V.
,
1991
, “
Simulating Boundary Layer Transition With Low-Reynolds-Number k–ε Turbulence Models: Part 1—An Evaluation of Prediction Charactertistics; Part 2—An Approach to Improving the Predictions
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
113
, pp.
10
26
.
32.
Schultz
H. D.
,
Gallus
H. E.
, and
Lakshminarayana
B.
,
1990
, “
Three-Dimensional Separated Flow Field in the End Wall Region of an Annular Compressor Cascade in the Presence of Rotor–Stator Interaction, Part 1: Quasi-Steady Flow Field and Comparison With Steady-State Data, Part 2: Unsteady Flow and Pressure Field
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
112
, pp.
669
690
.
33.
Tran
L. T.
, and
Taulbee
D. B.
,
1992
, “
Prediction of Unsteady Rotor–Surface Pressure and Heat Transfer From Wake Passing
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
114
, pp.
807
817
.
34.
Verdon, J. M., Barnett, M., Hall, K. C., and Ayer, T. C., 1991, “Development of Unsteady Aerodynamic Analyses for Turbomachinery Aeroelastic and Aeroacoustic Applications,” NASA CR 4405.
35.
Whitehead, D. S., 1970, “Vibration and Sound Generation in a Cascade of Flat Plate in Subsonic Flow,” British Aeronautical Research Council, R&M 3685, London.
This content is only available via PDF.
You do not currently have access to this content.