A computational study is carried out to understand the physical mechanism responsible for the improvement in stall margin of an axial flow rotor due to the circumferential casing grooves. Computational fluid dynamics simulations show an increase in operating range of the low speed rotor in the presence of casing grooves. A budget of the axial momentum equation is carried out at the rotor casing in the tip gap in order to understand the physical process behind this stall margin improvement. It is shown that for the smooth casing the net axial pressure force at the rotor casing in the tip gap is balanced by the net axial shear stress force. However, for the grooved casing the net axial shear stress force acting at the casing is augmented by the axial force due to the radial transport of axial momentum, which occurs across the grooves and power stream interface. This additional force adds to the net axial viscous shear force and thus leads to an increase in the stall margin of the rotor.

1.
Osborn
,
W. M.
,
Lewis
,
G. W.
, and
Heidelberg
,
L. J.
, 1971, “
Effect of Several Casing Treatments on Stall Limit and on Overall Performance of an Axial-Flow Compressor Rotor
,” NASA TN D-6537.
2.
Moore
,
R. D.
,
Kovich
,
G.
, and
Blade
,
R. J.
, 1971, “
Effect of Casing Treatment on Overall and Blade-Element Performance of a Compressor Rotor
,” NASA TN D-6538.
3.
Bailey
,
E. E.
, 1972, “
Effects of Grooved Casing Treatment on the Flow Range Capability of a Single-Stage Axial-Flow Compressor
,” NASA TM X-2459.
4.
Prince
,
D. C.
,
Wisler
,
D. C.
, and
Hilvers
,
D. E.
, 1974, “
Study of Casing Treatment Stall Margin Improvement Phenomena
,” NASA CR-134552.
5.
Griffin
,
R. G.
, and
Smith
,
L. H.
, 1966, “
Experimental Evaluation of Outer Case Blowing or Bleeding of Single Stage Axial Flow Compressor Part I—Design of Rotor and Bleeding and Blowing Configurations
,” NASA CR-54587.
6.
Koch
,
C. C.
, and
Smith
,
L. H.
, 1968, “
Experimental Evaluation of Outer Case Blowing or Bleeding of Single Stage Axial Flow Compressor Part IV—Performance of Bleed Insert Configuration No. 3
,” NASA CR-54590.
7.
Takata
,
H.
, and
Tsukuda
,
Y.
, 1977, “
Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness
,”
J. Eng. Power
0022-0825,
99
, pp.
121
133
.
8.
Paulon
,
J.
, and
Dehondt
,
D.
, 1982, “
Influence of Casing Treatment on the Operating Range of Axial Compressors
,” ASME Paper No. 82-GT-103.
9.
Smith
,
G. D. J.
, and
Cumpsty
,
N. A.
, 1985, “
Flow Phenomenon in Compressor Casing Treatment
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
532
541
.
10.
Lee
,
N. K. W.
, and
Greitzer
,
E. M.
, 1990, “
Effect of Endwall Suction and Blowing on Compressor Stability Enhancement
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
133
144
.
11.
Crook
,
A. J.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Adamczyk
,
J. J.
, 1993, “
Numerical Simulation of Compressor Endwall and Casing Treatment Flow Phenomena
,”
ASME J. Turbomach.
0889-504X,
115
(
3
), pp.
501
512
.
12.
Kang
,
C. S.
,
McKenzie
,
A. B.
, and
Elder
,
R. L.
, 1995, “
Recessed Casing Treatment Effects on Fan Performance and Flow Field
,” ASME Paper No. 95-GT-197.
13.
Rabe
,
D. C.
, and
Hah
,
C.
, 2002, “
Application of Casing Circumferential Grooves for Improved Stall Margin in a Transonic Axial Compressor
,” ASME Paper No. GT-2002-30641.
14.
Wisler
,
D. C.
, 1977, “
Core Compressor Exit Stage Study: Volume 1—Blade Design
,” NASA CR 135391.
15.
Wellborn
,
S.
,
Okiishi
,
T. H.
, and
Strazisar
,
A. J.
, 1996, “
Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance
,” NASA CR 198536.
16.
Culley
,
E. C.
,
Bright
,
M. M.
,
Prahst
,
P. S.
, and
Strazisar
,
A. J.
, 2003, “
Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment
,”
Proceedings of the ASME TURBO EXPO
.
17.
Adamczyk
,
J. J.
,
Celestina
,
M. L.
,
Beach
,
T. A.
, and
Barnett
,
M.
, 1990, “
Simulation of Three-Dimensional Viscous Flow within a Multistage Turbine
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
112
, pp.
370
376
.
18.
Shabbir
,
A.
,
Zhu
,
J.
, and
Celestina
,
M. L.
, 1996, “
Assessment of Three Turbulence Models in a Compressor Rotor
,” ASME Paper No. 96-GT-198.
19.
Spalding
,
D. B.
, 1961, “
A Single Formula for the Law of the Wall
,”
J. Appl. Mech.
0021-8936,
28
, pp.
455
458
.
20.
Shabbir
,
A.
, and
Turner
,
M. G.
, 2004, “
A Wall Function for Calculating The Skin Friction with Surface Roughness
,” ASME Paper No. GT2004-53908.
21.
Prahst
,
S.
, and
Strazisar
,
A. J.
, 2003 (private communication).
22.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
, 1999, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
449
509
.
23.
Van Zante
,
D. E.
,
Strazisar
,
A. J.
,
Wood
,
J.
,
Hathaway
,
M. D.
, and
Okiishi
,
T.
, 2000, “
Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
734
742
.
24.
Tan
,
C. S.
, and
Greitzer
,
E. M.
, 2004 (private communication).
You do not currently have access to this content.