Film cooling in turbine blades involves injecting cold air through small holes over the surface of the blade to thermally protect it against the incoming hot freestream. Compound angled film cooling, in which the injected jet is angled laterally with respect to the streamwise flow direction, is used in industrial designs owing to their lower cost of manufacture compared with shaped geometries but a high coolant spread. The current study incorporates flow structure measurements of film cooling injection flows inclined at 30 deg to a flat surface with lateral angles of 15 deg, 60 deg, and 90 deg to the freestream. Blowing ratios of 1–2 and density ratios of 1–1.5 are studied. Three dimensional velocity measurements are carried out through high resolution stereoscopic particle image velocimetry. It is observed that the typical counter-rotating vortex pair structure associated with streamwise coolant injection is replaced with a single large vortex, which causes a more lateral spread of the coolant. Infrared thermography measurements are made for the same operating points using the super position principle, which allows calculation of adiabatic effectiveness and heat transfer coefficient. The adiabatic effectiveness is high at low blowing ratios for compound angled injection due to greater proximity of the coolant jet to the wall. At higher blowing ratios, the detrimental effects on effectiveness due to jet lift-off are counteracted by the greater coolant spread due to asymmetric primary vorticity. The heat transfer coefficient is also enhanced especially in the downstream region for high compound angles. The average heat transfer coefficient due to very large compound angles is not very sensitive to changing momentum flux ratios.

1.
Abhari
,
R. S.
, 1996, “
Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
123
133
.
2.
Ligrani
,
P. M.
,
Ciriello
,
S.
, and
Bishop
,
D. T.
, 1992, “
Heat Transfer, Adiabatic Effectiveness and Injectant Distributions Downstream of a Single Row and Two Staggered Rows of Compound Angle Film Cooling Holes
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
687
700
.
3.
Nasir
,
H.
,
Ekkad
,
S. V.
, and
Acharya
,
S.
, 2001, “
Effect of Compound Angle Injection on Flat Surface Film Cooling With Large Streamwise Injection Angle
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
23
29
.
4.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angled Holes Based on Large-Scale Experiments
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
57
64
.
5.
Aga
,
V.
,
Rose
,
M.
, and
Abhari
,
R. S.
, 2008, “
Experimental Flow Structure Investigation of Compound Angled Film Cooling
,”
ASME J. Turbomach.
0889-504X,
130
, p.
031005
.
6.
McGovern
,
K. T.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film-Cooling Physics: Part II-Compound Angled Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
113
121
.
7.
Honami
,
S.
,
Shizawa
,
T.
, and
Uchiyama
,
A.
, 1994, “
Behavior of the Laterally Injected Jet in Film Cooling Measurements of Surface Temperature and Velocity-Temperature Field Within the Jet
,”
ASME J. Turbomach.
0889-504X,
116
(
1
), pp.
106
112
.
8.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
, 1996, “
The Effect of High Freestream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
(
4
), pp.
814
825
.
9.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
, 1978, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
0022-0825,
100
, pp.
476
481
.
10.
Teekaram
,
A.
,
Forth
,
C.
, and
Jones
,
R.
, 1991, “
Film Cooling in the Presence of Mainstream Pressure Gradients
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
484
492
.
11.
Waye
,
S. K.
, and
Bogard
,
D. G.
, 2007, “
High-Resolution Film Cooling Effectiveness Comparison of Axial and Compound Angle Holes on the Suction Side of a Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
202
211
.
12.
Hung
,
M. S.
,
Ding
,
P. P.
, and
Chen
,
P. H.
, 2009, “
Effects of Injection Angle Orientation on Concave and Convex Surfaces Film Cooling
,”
Exp. Therm. Fluid Sci.
0894-1777,
33
(
2
), pp.
292
305
.
13.
Jung
,
I. S.
, and
Lee
,
J. S.
, 2000, “
Effects of Orientation Angles on Film Cooling Over a Flat Plate: Boundary Layer Temperature Distributions and Adiabatic Film Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
122
(
1
), pp.
153
160
.
14.
Goldstein
,
R. J.
, and
Jin
,
P.
, 2001, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
222
230
.
15.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
16.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
807
813
.
17.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2001, “
High Resolution Measurements of Heat Transfer Coefficients From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
749
757
.
18.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2002, “
Correlation of Film Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
686
698
.
19.
Lee
,
S. W.
,
Kim
,
Y. B.
, and
Lee
,
J. S.
, 1997, “
Flow Characteristics and Aerodynamic Losses of Film Cooling Jets With Compound Angle Orientations
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
310
319
.
20.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2002, “
Heat Flux Reduction From Film Cooling and Correlation of Heat Transfer Coefficients From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
699
709
.
21.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2001, “
High Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
758
765
.
22.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2001, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination and Orientation
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
781
787
.
23.
Bernsdorf
,
S.
,
Rose
,
M.
, and
Abhari
,
R. S.
, 2006, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
141
149
.
24.
Dantec Dynamics
, 2002, Flow Manager Software and Introduction to PIV Instrumentation, Dantec Dynamics A/S.
25.
Siegel
,
R.
, and
Howell
,
J. R.
, 2002,
Thermal Radiation Heat Transfer
,
Taylor & Francis
,
London
.
26.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
28.
Aga
,
V.
,
Mansour
,
M.
, and
Abhari
,
R. S.
, 2009, “
Aerothermal Performance of Streamwise and Compound Angled Pulsating Film Cooling Jets
,”
ASME J. Turbomach.
0889-504X,
131
(
4
), p.
041015
.
29.
Hasselbrink
,
E. F. J.
, and
Mungal
,
M. G.
, 2001, “
Transverse Jets and Jet Flames. Part 1: Scaling Laws for Strong Transverse Jets
,”
J. Fluid Mech.
0022-1120,
443
, pp.
1
25
.
30.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
, 2004,
Internal Flow
,
Cambridge University Press
,
Cambridge, UK
.
31.
Goldstein
,
R. J.
, 1971, “
Film Cooling
,”
Adv. Heat Transfer
0065-2717,
7
, pp.
321
379
.
32.
Fric
,
T. F.
, and
Roshko
,
A.
, 1991, “
Structure in the Near Field of a Transverse Jet
,”
Turbulent Shear Flows
,
7
, pp.
225
237
.
33.
Ammari
,
H.
,
Hay
,
N.
, and
Lampard
,
D.
, 1990, “
The Effect of Density Ratio on the Heat Transfer Coefficient From a Film-Cooled Flat Plate
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
444
450
.
34.
Goldstein
,
R. J.
,
Jin
,
P.
, and
Olson
,
R. L.
, 1999, “
Film Cooling Effectiveness and Mass/Heat Transfer Downstream of One Row of Discrete Holes
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
225
232
.
You do not currently have access to this content.