In this paper, the transonic flow pattern and its influence on heat transfer on a high-pressure turbine blade tip are investigated using experimental and computational methods. Spatially resolved heat transfer data are obtained at conditions representative of a single-stage high-pressure turbine blade (Mexit=1.0, Reexit=1.27×106, gap=1.5% chord) using the transient infrared thermography technique within the Oxford high speed linear cascade research facility. Computational fluid dynamics (CFD) predictions are conducted using the Rolls-Royce HYDRA/PADRAM suite. The CFD solver is able to capture most of the spatial heat flux variations and gives prediction results, which compare well with the experimental data. The results show that the majority of the blade tip experiences a supersonic flow with peak Mach number reaching 1.8. Unlike other low-speed data in the open literature, the turbine blade tip heat transfer is greatly influenced by the shock wave structure inside the tip gap. Oblique shock waves are initiated near the pressure-side edge of the tip, prior to being reflected multiple times between the casing and the tip. Supersonic flow within the tip gap is generally terminated by a normal shock near the exit of the gap. Both measured and calculated heat transfer spatial distributions illustrate very clear stripes as the signature of the multiple shock structure. Overall, the supersonic part of tip experiences noticeably lower heat transfer than that near the leading-edge where the flow inside the tip gap remains subsonic.

1.
Moore
,
J.
, and
Elward
,
K. M.
, 1993, “
Shock Formation in Overexpanded Tip Leakage Flow
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
392
399
.
2.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
, 2009, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME
Paper No. GT2009-59404.
3.
Bunker
,
R. S.
, 2001, “
A Review of Turbine Blade Tip Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
64
79
.
4.
Glezer
,
B.
,
Harvey
,
N.
,
Camci
,
C.
,
Bunker
,
R.
, and
Ameri
,
A.
, 2004,
Turbine Blade Tip Design and Tip Clearance Treatment
(
von Karman Institute for Fluid Dynamics Lecture Series VKI-LS 2004-02)
.
5.
Mayle
,
R. E.
, and
Metzger
,
D. E.
, 1982, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Proceedings of the Seventh International Heat Transfer Conference
,
Hemisphere
,
New York
, pp.
87
92
.
6.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
, 1989, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
131
138
.
7.
Teng
,
S.
,
Han
,
J. C.
, and
Azad
,
G. M. S.
, 2001, “
Detailed Heat Transfer Coefficient Distributions on a Large-Scale Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
0022-1481,
123
(
4
), pp.
803
809
.
8.
Jin
,
P.
, and
Goldstein
,
R. J.
, 2003, “
Local Mass/Heat Transfer on Turbine Blade Near-Tip Surfaces
,”
ASME J. Turbomach.
0889-504X,
125
(
3
), pp.
521
528
.
9.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
, 2009, “
Aero-Thermal Investigation of Tip Leakage Flow in Axial Turbines. Part 1: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
0889-504X,
131
, p.
011006
.
10.
Newton
,
P. J.
,
Krishnababu
,
S. K.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
, 2006, “
Heat Transfer and Aerodynamics of Turbine Blade Tips in a Linear Cascade
,”
ASME J. Turbomach.
0889-504X,
128
(
2
), pp.
300
309
.
11.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
, 2008, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low Speed Turbine Blade Cascade With Moving Endwall
,”
ASME J. Turbomach.
0889-504X,
130
(
1
), p.
011001
.
12.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
, 2006, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade With Moving Endwall
,”
ASME
Paper No. GT2006-90425.
13.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
, 2000, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
263
271
.
14.
Ameri
,
A. A.
, and
Bunker
,
R. S.
, 2000, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 2—Simulation Results
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
272
277
.
15.
Azad
,
G. M. S.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R.
, 2000, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
717
724
.
16.
Azad
,
G. S.
,
Han
,
J.
, and
Boyle
,
R. J.
, 2000, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
(
4
), pp.
725
732
.
17.
Nasir
,
H.
,
Ekkad
,
S. V.
,
Kontrovitz
,
D. M.
,
Bunker
,
R. S.
, and
Prakash
,
C.
, 2004, “
Effect of Tip Gap and Squealer Geometry on Detailed Heat Transfer Measurements Over a High Pressure Turbine Rotor Blade Tip
,”
ASME J. Turbomach.
0889-504X,
126
(
2
), pp.
221
228
.
18.
Yang
,
T. T.
, and
Diller
,
T. E.
, 1995, “
Heat Transfer and Flow for a Grooved Turbine Blade Tip in a Transonic Cascade
,”
ASME
Paper No. 95-WA/HT-29.
19.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
, 2003, “
Turbine Tip and Shroud Heat Transfer and Loading Part A: Parameter Effects including Reynolds Number, Pressure Ratio, and Gas to Metal Temperature Ratio
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
97
106
.
20.
Tallman
,
J. A.
,
Haldeman
,
C. W.
,
Dunn
,
M. G.
, and
Tolpadi
,
A. K.
, 2009, “
Heat Transfer Measurements and Predictions for a Modern, High-Pressure, Transonic Turbine, Including Endwalls
,”
ASME J. Turbomach.
0889-504X,
131
(
2
), p.
021001
.
21.
Dunn
,
M. G.
,
Kim
,
J.
,
Civinskas
,
K. C.
, and
Boyle
,
R. J.
, 1994, “
Time-Averaged Heat Transfer and Pressure Measurements and Comparison With Prediction for a Two-Stage Turbine
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
14
22
.
22.
Ameri
,
A. A.
, and
Steinthorsson
,
E.
, 1996, “
Analysis of Gas Turbine Rotor Blade Tip and Shroud Heat Transfer
,”
ASME
Paper No. 96-GT-189.
23.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
, 2000, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
692
698
.
24.
Molter
,
S. M.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Bergolhz
,
R. F.
, and
Vitt
,
P.
, 2006, “
Heat-Flux Measurements and Predictions for the Blade Tip Region of a High Pressure Turbine
,”
ASME
Paper No. GT2006-90048.
25.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Thomas
,
G. A.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2005, “
Blade-Tip Heat Transfer in a Transonic Turbine
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
219
(
6
), pp.
421
430
.
26.
O’Dowd
,
D.
,
Zhang
,
Q.
,
Ligrani
,
P.
,
He
,
L.
, and
Friedrichs
,
S.
, 2009, “
Comparisons of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME
Paper No. GT2009-59376.
27.
Gillespie
,
D. R. H.
,
Wang
,
Z.
, and
Ireland
,
P. T.
, 1995, “
Heating Element
,” British Patent Application No. PCT/GB96/2017.
28.
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
Schultz
,
D. L.
, 1978, “
On-Line Computer for Transient Turbine Cascade Instrumentation
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
AES-14
(
5
), pp.
738
749
.
29.
Oldfield
,
M. L. G.
, 2008, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021023
.
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
31.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
32.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
33.
Shyam
,
V.
,
Ameri
,
A.
,
Luk
,
D. F.
, and
Chen
,
J. P.
, 2009, “
3-D Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer
,”
ASME
Paper No. GT2009-60322.
You do not currently have access to this content.