A closely combined experimental and computational fluid dynamics (CFD) study on a transonic blade tip aerothermal performance at engine representative Mach and Reynolds numbers (Mexit=1,Reexit=1.27×106) is presented here and its companion paper (Part II). The present paper considers surface heat-transfer distributions on tip surfaces and on suction and pressure-side surfaces (near-tip region). Spatially resolved surface heat-transfer data are measured using infrared thermography and transient techniques within the Oxford University high speed linear cascade research facility. The Rolls-Royce PLC HYDRA suite is employed for numerical predictions for the same tip configuration and flow conditions. The CFD results are generally in good agreement with experimental data and show that the flow over a large portion of the blade tip is supersonic for all three tip gaps investigated. Mach numbers within the tip gap become lower as the tip gap decreases. For the flow regions near the leading edge of the tip gap, surface Nusselt numbers decrease as the tip gap decreases. Opposite trends are observed for the trailing edge region. Several “hot spot” features on blade tip surfaces are attributed to enhanced turbulence thermal diffusion in local regions. Other surface heat-transfer variations are attributed to flow variations induced by shock waves. Flow structure and surface heat-transfer variations are also investigated numerically when a moving casing is present. The inclusion of moving casing leads to notable changes to flow structural characteristics and associated surface heat-transfer variations. However, significant portions of the tip leakage flow remain transonic with clearly identifiable shock wave structures.

1.
Bunker
,
R. S.
, 2001, “
A Review of Turbine Blade Tip Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
64
79
.
2.
Mayle
,
R. E.
, and
Metzger
,
D. E.
, 1982, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Proceedings of the Seventh International Heat Transfer Conference
,
Hemisphere
,
New York
, pp.
87
92
.
3.
Metzger
,
D. E.
, and
Rued
,
K.
, 1989, “
The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part I—Sink Flow Effects on Blade Pressure Side
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
284
292
.
4.
Rued
,
K.
, and
Metzger
,
D. E.
, 1989, “
The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part II—Source Flow Effects on Blade Suction Sides
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
293
300
.
5.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
, 1989, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
131
138
.
6.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
, 1991, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
502
507
.
7.
Yang
,
T. T.
, and
Diller
,
T. E.
, 1995, “
Heat Transfer and Flow for a Grooved Turbine Blade Tip in a Transonic Cascade
,”
ASME
Paper No. 95-WA/HT-29.
8.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
, 2000, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
263
271
.
9.
Azad
,
G. M. S.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R.
, 2000, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
717
724
.
10.
Azad
,
G. S.
,
Han
,
J.
, and
Boyle
,
R. J.
, 2000b, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
(
4
), pp.
725
732
.
11.
Nasir
,
H.
,
Ekkad
,
S. V.
,
Kontrovitz
,
D. M.
,
Bunker
,
R. S.
, and
Prakash
,
C.
, 2004, “
Effect of Tip Gap and Squealer Geometry on Tailed Heat Transfer Measurements Over a High Pressure Turbine Rotor Blade Tip
,”
ASME J. Turbomach.
0889-504X,
126
(
2
), pp.
221
228
.
12.
Ameri
,
A. A.
, and
Bunker
,
R. S.
, 2000, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 2—Simulation Results
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
272
277
.
13.
Tallman
,
J.
, and
Lakshminarayana
,
B.
, 2001, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part I—Effect of Tip Clearance Height
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
314
323
.
14.
Teng
,
S.
,
Han
,
J. C.
, and
Azad
,
G. M. S.
, 2001, “
Detailed Heat Transfer Coefficient Distributions on a Large-Scale Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
0022-1481,
123
(
4
), pp.
803
809
.
15.
Jin
,
P.
, and
Goldstein
,
R. J.
, 2003, “
Local Mass/Heat Transfer on Turbine Blade Near-Tip Surfaces
,”
ASME J. Turbomach.
0889-504X,
125
(
3
), pp.
521
528
.
16.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
, 2009, “
Aero-Thermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
0889-504X,
131
(
1
), p.
011006
.
17.
Newton
,
P. J.
,
Krishnababu
,
S. K.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
, 2006, “
Heat Transfer and Aerodynamics of Turbine Blade Tips in a Linear Cascade
,”
ASME J. Turbomach.
0889-504X,
128
(
2
), pp.
300
309
.
18.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
, 2008, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low Speed Turbine Blade Cascade With Moving Endwall
,”
ASME J. Turbomach.
0889-504X,
130
(
1
), p.
011001
.
19.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
, 2006, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade With Moving Endwall
,”
ASME
Paper No. GT2006-90425.
20.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
, 2003, “
Turbine Tip and Shroud Heat Transfer and Loading—Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas-to-Metal Temperature Ratio
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
97
106
.
21.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Thomas
,
G. A.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2005, “
Blade-Tip Heat Transfer in a Transonic Turbine
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
219
(
6
), pp.
421
430
.
22.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
, 2000, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
692
698
.
23.
Molter
,
S. M.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Bergolhz
,
R. F.
, and
Vitt
,
P.
, 2006, “
Heat-Flux Measurements and Predictions for the Blade Tip Region of a High Pressure Turbine
,”
ASME
Paper No. GT2006-90048.
24.
Tallman
,
J. A.
,
Haldeman
,
C. W.
,
Dunn
,
M. G.
, and
Tolpadi
,
A. K.
, 2009, “
Heat Transfer Measurements and Predictions for a Modern, High-Pressure, Transonic Turbine, Including Endwalls
,”
ASME J. Turbomach.
0889-504X,
131
(
2
), p.
021001
.
25.
Key
,
N. L.
, and
Arts
,
T.
, 2006, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
0889-504X,
128
(
2
), pp.
213
220
.
26.
Moore
,
J.
, and
Elward
,
K. M.
, 1993, “
Shock Formation in Overexpanded Tip Leakage Flow
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
392
399
.
27.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
, 2009, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
0889-504X, in press.
28.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
, 2011, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
133
(
4
), p.
041001
.
29.
Gillespie
,
D. R. H.
,
Wang
,
Z.
, and
Ireland
,
P. T.
, 1995, “
Heating Element
,” British Patent No. PCT/GB96/2017.
30.
O’Dowd
,
D.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
, 2011, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
0889-504X,
133
(
2
), p.
021028
.
31.
Oldfield
,
M. L. G.
, 2008, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021023
.
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
33.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
34.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
35.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
, 2009, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part II: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
0889-504X,
131
(
1
), p.
011007
.
You do not currently have access to this content.