Unlike Reynolds-averaged Navier–Stokes (RANS) models that need calibration for different flow classes, LES (where larger turbulent structures are resolved by the grid and smaller modeled in a fashion reminiscent of RANS) offers the opportunity to resolve geometry dependent turbulence as found in complex internal flows—albeit at substantially higher computational cost. Based on the results for a broad range of studies involving different numerical schemes, large eddy simulation (LES) models and grid topologies, an LES hierarchy and hybrid LES related approach is proposed. With the latter, away from walls, no LES model is used, giving what can be termed numerical LES (NLES). This is relatively computationally efficient and makes use of the dissipation present in practical industrial computational fluid dynamics (CFD) programs. Near walls, RANS modeling is used to cover over numerous small structures, the LES resolution of which is generally intractable with current computational power. The linking of the RANS and NLES zones through a Hamilton–Jacobi equation is advocated. The RANS-NLES hybridization makes further sense for compressible flow solvers, where, as the Mach number tends to zero at walls, excessive dissipation can occur. The hybrid strategy is used to predict flow over a rib roughened surface and a jet impinging on a convex surface. These cases are important for blade cooling and show encouraging results. Further results are presented in a companion paper.

1.
Klostermeier
,
C.
, 2008, “
Investigation Into the Capability of Large Eddy Simulation for Turbomachinery Design
,” Ph.D. thesis, University of Cambridge, School of Engineering.
2.
Leschziner
,
M. A.
, 2000, “
Turbulence Modelling for Separated Flows With Anisotropy-Resolving Closures
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
358
, pp.
3247
3277
.
3.
Long
,
C. A.
,
Morse
,
A. P.
, and
Tucker
,
P. G.
, 1997, “
Measurement and Computation of Heat Transfer in High-Pressure Compressor Drum Geometries With Axial Throughflow
,”
ASME J. Turbomach.
0889-504X,
119
(
1
), pp.
51
60
.
4.
Georgiadis
,
N.
, and
DeBonis
,
J. R.
, 2006, “
Navier Stokes Analysis Methods for Turbulent Jet Flows With Application to Aircraft Exhaust Nozzles
,”
Prog. Aerosp. Sci.
0376-0421,
42
, pp.
377
418
.
5.
Secundov
,
A. N.
,
Birch
,
S. F.
, and
Tucker
,
P. G.
, 2007, “
Propulsive Jets and Their Acoustics
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
2443
2467
.
6.
Shur
,
M.
,
Spalart
,
P.
,
Strelets
,
M.
, and
Travin
,
A.
, 2003, “
Towards the Prediction of Noise From Jet Engines
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
551
561
.
7.
DeBonis
,
J.
, 2006, “
Progress Towards Large Eddy Simulations for Prediction of Realistic Nozzle Systems
,”
The 44th American Institute of Astronautics and Aeronautics Aerospace Sciences Meeting and Exhibit
, Reno, Nevada, Jan. 9–10, Paper No. AIAA 2006-487.
8.
Roe
,
P.
, 1997, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Solvers
,”
J. Comput. Phys.
0021-9991,
135
, pp.
250
258
.
9.
Cumpsty
,
N.
, 2003,
Jet Propulsion
,
Cambridge University Press
,
Cambridge
.
10.
Place
,
J.
, 1997, “
Three Dimensional Flow in Core Compressors
,” Ph.D. thesis, University of Cambridge, School of Engineering.
11.
Tucker
,
P.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Xia
,
H.
,
Ray
,
P.
,
Tyacke
,
J.
, and
Dawes
,
W.
, 2012, “
Hybrid LES Approach for Practical Turbomachinery Flows—Part II: Further Applications
,”
ASME J. Turbomach.
0889-504X,
134
(
2
), p.
021024
.
12.
Eastwood
,
S.
,
Tucker
,
P.
,
Klostermeier
,
C.
, and
XIA
,
H.
, 2009, “
Developing Large Eddy Simulation for Turbomachinery Applications
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
367
, pp.
2999
3013
.
13.
Lapworth
,
B.
, 2004, “
HYDRA CFD: A Framework for Collaborative CFD Development
,”
The International Conference on Scientific and Engineering Computation
, Singapore.
14.
Xia
,
H.
, 2005, “
Dynamic Grid Detached-Eddy Simulation for Synthetic Jet Flows
,” Ph.D. thesis, University of Sheffield, School of Engineering.
15.
Hills
,
N.
, 2007, “
Achieving High Parallel Performance for an Unstructured Unsteady Turbomachinery CFD Code
,”
Aeronaut. J.
0001-9240,
111
(
1117
), pp.
185
194
.
16.
Brandvik
,
T.
, and
Pullan
,
G.
, 2008, “
Acceleration of a 3D Euler Solver Using Commodity Graphic Hardware
,”
The 46th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, Nevada, Jan. 7–10, Paper No. AIAA 2008-605.
17.
Piomelli
,
U.
, and
Balaras
,
E.
, 2002, “
Wall-Layer Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
349
374
.
18.
Leschziner
,
M.
,
Li
,
N.
, and
Tessicini
,
F.
, 2009, “
Simulating Flow Separation From Continuous Surfaces: Routes to Overcoming the Reynolds Number Barrier
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
367
, pp.
2885
2903
.
19.
Chapman
,
D. R.
, 1979, “
Computational Aerodynamics, Development and Outlook
,”
AIAA J.
0001-1452,
17
, pp.
1293
1313
.
20.
Pao
,
Y. -H.
, 1965, “
Structure of Turbulent Velocity and Scalar Fields at Large Wave Numbers
,”
Phys. Fluids
1070-6631,
8
, pp.
1063
1075
.
21.
Koller
,
U.
,
Monig
,
R.
,
Kusters
,
B.
, and
Schreiber
,
H. -A.
, 2000, “
Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines— Part I: Design and Optimization
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
397
405
.
22.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
536
.
23.
Liu
,
Y.
,
Tucker
,
P. G.
, and
Kerr
,
R. M.
, 2008, “
Linear and Nonlinear Model Large-Eddy Simulations of a Plane Jet
,”
Comput. Fluids
0045-7930,
37
, pp.
439
449
.
24.
Mary
,
I.
, and
Sagaut
,
P.
, 2002, “
Large Eddy Simulation of Flow Around an Airfoil Near Stall
,”
AIAA J.
0001-1452,
40
(
6
), pp.
1139
1145
.
25.
Ghosal
,
S.
, 1996, “
An Analysis of Numerical Errors in Large Eddy Simulations of Turbulence
,”
J. Comput. Phys.
0021-9991,
125
, pp.
187
206
.
26.
Chow
,
F. K.
, and
Moin
,
P.
, 2003, “
A Further Study of Numerical Errors in Large-Eddy Simulations
,”
J. Comput. Phys.
0021-9991,
184
, pp.
366
380
.
27.
Eastwood
,
S.
, 2010, “
Hybrid LES-RANS of Complex Geometry Jets
,” Ph.D. thesis, Cambridge University, School of Engineering.
28.
Fureby
,
C.
, 2004, “
Large Eddy Simulation of High Reynolds Number Wall Bounded Flows
,”
AIAA J.
0001-1452,
42
(
3
), pp.
457
468
.
29.
Wolfshtein
,
K. M.
, 1969, “
The Velocity and Temperature Distribution in One Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
301
318
.
30.
Dahlstrom
,
S.
, and
Davidson
,
L.
, 2003, “
Hybrid RANS-LES With Additional Conditions at the Matching Region
,”
Turbulence Heat and Mass Transfer 4
,
K.
Hanjalic
,
Y.
Nagano
, and
M. J.
Tummers
, eds.,
Begell House
,
New York
, pp.
689
696
.
31.
Davidson
,
L.
, and
Peng
,
S. -H.
, 2003, “
Hybrid LES-RANS: A One Equation SGS Model Combined With a k-ω Model for Predicting Recirculating Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
43
, pp.
1003
1018
.
32.
Tucker
,
P. G.
, and
Davidson
,
L.
, 2004, “
Zonal k-l Based Large Eddy Simulations
,”
Comput. Fluids
0045-7930,
33
, pp.
267
287
.
33.
Iacovides
,
H.
, and
Theofanopoulos
,
I. P.
, 1991, “
Turbulence Modelling of axisymmetric Flow Inside Rotating Cavities
,”
Int. J. Heat Fluid Flow
0142-727X,
12
(
1
), pp.
2
11
.
34.
Chung
,
Y. M.
, and
Tucker
,
P. G.
, 2004, “
Numerical Studies of Heat Transfer Enhancements in Laminar Separated Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
22
31
.
35.
Guillard
,
H.
, and
Viozat
,
C.
, 1997, “
On the Behaviour of Upwind Schemes in the Low Mach Number Limit, Theme 4, Simulation and Optimisation of Complex Systems
,” Project Sinus,
INRIA
, Research Report No. 3160, April, 28 pages.
36.
Sandham
,
N. D.
,
Li
,
Q.
, and
Yee
,
H. C.
, 2002, “
Entropy Splitting for High-Order Numerical Simulation of Compressible Turbulence
,”
J. Comput. Phys.
0021-9991,
178
, pp.
307
322
.
37.
Bogey
,
C.
, and
Bailey
,
C.
, 2005, “
Decrease of the Effective Reynolds Number With Eddy-Viscosity Subgrid-Scale Modelling
,”
AIAA J.
0001-1452,
43
(
2
), pp.
437
439
.
38.
Razafindralandy
,
D.
,
Hamdouni
,
A.
, and
Béghein
,
C.
, 2007, “
A Class of Subgrid-Scale Models Preserving the Symmetry Group of Navier–Stokes Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
, pp.
243
253
.
39.
Spalart
,
P. R.
,
Jou
,
W.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
, 1997, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
The First AFOSR International Conference on DNS/LES in Advances in DNS/LES
, pp.
137
147
.
40.
Tucker
,
P. G.
, and
Karabasov
,
S. A.
, 2009, “
Unstructured Grid Solution of the Eikonal Equation for Acoustics
,”
Int. J. Aeroacoust.
1475-472X,
8
(
6
), pp.
535
553
.
41.
Liu
,
Y.
,
Tucker
,
P. G.
, and
Iacono
,
G. L.
, 2006, “
Comparison of Zonal RANS and LES for a Non-Isothermal Ribbed Channel Flow
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
391
401
.
42.
Acharya
,
S.
,
Dutta
,
S.
,
Myrum
,
T. A.
, and
Baker
.
R. S.
, 1993, “
Periodically Developed Flow and Heat Transfer in a Ribbed Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
8
), pp.
2069
2082
.
43.
Tyacke
,
J. C.
, 2009, “
Low Reynolds Number Heat Transfer Prediction Employing Large Eddy Simulation for Electronics Geometries
,” Ph.D. thesis, Swansea University, Civil and Computational Engineering.
44.
George
,
W. K.
, and
Tutkun
,
M.
, 2009, “
Mind the Gap: A Guideline for LES
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
367
, pp.
2839
2847
.
45.
Mydlarski
,
L.
, and
Warhaft
,
Z.
, 1996, “
On the Onset of High-Reynolds-Number Grid Generated Wind Tunnel Turbulence
,”
J. Fluid Mech.
0022-1120,
320
, pp.
331
368
.
46.
Gamard
,
S.
, and
George
,
W. K.
, 1999, “
Reynolds Number Dependence of Energy Spectra in the Overlap Region of Isotropic Turbulence
,”
Flow, Turbul. Combust.
1386-6184,
63
, pp.
443
477
.
47.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Won
,
S. Y.
, 1999, “
The Effect of Concave Surface Curvature on Heat Transfer From a Fully Developed Round Impinging Jet
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2489
2497
.
48.
Tucker
,
P. G.
, and
Lardeau
,
S.
, 2009, “
Applied Large Eddy Simulation
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
367
, pp.
2809
2818
.
You do not currently have access to this content.