Solid particle ingestion is one of the principal degradation mechanisms in the turbine and compressor sections of gas turbines. In particular, in industrial applications, the microparticles that are not captured by the air filtration system cause fouling and, consequently, a performance drop of the compressor. This paper presents three-dimensional numerical simulations of the microparticle ingestion (0 μm–2 μm) on an axial compressor rotor carried out by means of a commercial computational fluid dynamic (CFD) code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by flow turbulence. It is of great interest to the industry to determine which areas of the compressor airfoils are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separate from the continuous phase. Then, the NASA Rotor 37 is considered as a case study for the numerical investigation. The compressor rotor numerical model and the discrete phase treatment have been validated against the experimental and numerical data available in literature. The number of particles, sizes, and concentrations are specified in order to perform a quantitative analysis of the particle impact on the blade surface. The results show that microparticles tend to follow the flow by impacting at full span with a higher impact concentration on the pressure side (PS). The suction side (SS) is affected only by the impact of the smaller particles (up to 1 μm). Particular fluid dynamic phenomena, such as separation, stagnation point, and tip leakage vortex, strongly influence the impact location of the particles.

References

1.
camfil FARR,
2013
, “Offshore-Filtration and Acoustic Package,” Solar Turbine Inc., San Diego CA, confidential report.
2.
Wilcox
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2011
, “
Successful Selection and Operation of Gas Turbine Inlet Filtration Systems
,”
Proceedings of the 40th Turbomachinery Symposium
, Houston, TX, Sept. 12–15, pp.
254
268
.
3.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanism in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(3), p.
032401
.10.1115/1.4004403
4.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.10.1115/1.4002350
5.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Non-Uniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(2), p.
021016
.10.1115/1.4025227
6.
Kurz
,
R.
,
Brun
,
K.
,
Meher-Homji
,
C.
, and
Moore
,
J.
,
2012
, “
Gas Turbine Performance and Maintenance
,”
41st Turbomachinery Symposium
, Houston, TX, Sept. 24–27.
7.
Fluent, 2005, Software Training, TRN-98-006, Fluent, Inc., Lebanon, NH.
8.
Zhang
,
Z.
, and
Chen
,
Q.
,
2006
, “
Experimental Measurements and Numerical Simulations of Particle Transport and Distribution in Ventilated Rooms
,”
Atmos. Environ.
,
40
(18), pp.
3396
3408
.10.1016/j.atmosenv.2006.01.014
9.
Gupta
,
P. K.
, and
Pagalthivarthi
,
K. V.
,
2006
, “
A Comparative Study of Effect of Model Lift Coefficients on Particle Trajectory
,”
Indian J. Eng. Mater. Sci.
,
13
(4), pp.
293
306
10.
Goodwin
,
J. E.
,
Sage
,
W.
, and
Tilly
,
G. P.
,
1969
, “
Study of Erosion by Solid Particles
,”
Proc. Inst. Mech. Eng.
,
184
(
15
), pp.
279
292
.10.1243/PIME_PROC_1969_184_024_02
11.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.10.2514/1.18462
12.
Hamed
,
A. A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Das
,
K.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(3), pp.
445
452
.10.1115/1.1860376
13.
Suzuki
,
M.
,
Inaba
,
K.
, and
Yamamoto
,
M.
,
2008
, “
Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor
,”
J. Thermal Sci.
,
17
(
2
), pp.
125
133
.10.1007/s11630-008-0125-7
14.
Suzuki
,
M.
, and
Yamamoto
,
M.
,
2011
, “
Numerical Simulation of Sand Erosion Phenomena in a Single-Stage Axial Compressor
,”
J. Fluid Sci. Technol.
,
6
(
1
), pp.
98
113
.10.1299/jfst.6.98
15.
Ghenaiet
,
A.
,
2012
, “
Study of Sand Particle Trajectories and Erosion Into the First Compression Stage of a Turbofan
,”
ASME J. Turbomach.
,
134
(5), p.
051025
.10.1115/1.4004750
16.
Vigueras Zuniga
,
M. O.
,
2007
, “
Analysis of Gas Turbine Compressor Fouling and Washing on Line
,” Ph.D. thesis, Cranfield University, Cranfield, UK.
17.
Parker
,
G. J.
, and
Lee
,
P.
,
1972
, “
Studies of the Deposition of Sub-Micron Particles on Turbine Blades
,”
Proc. Inst. Mech. Eng.
,
186
(
1
), pp.
519
526
.10.1243/PIME_PROC_1972_186_059_02
18.
Elrod
,
C. E.
, and
Bettner
,
J. L.
,
1983
, “
Experimental Verification of an Endwall Boundary Layer Prediction Method
,” NATO Advisory Group for Aerospace and Development, Neuilly-sur-Seine, France, Report No. AGARD CP-351.
19.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072401
.10.1115/1.4000128
20.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly-Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor
,” NASA Lewis Research Center, Cleveland, OH, NASA Report No. TP 1337.
21.
ANSYS, 2012, Ansys Fluent User Manual, ANSYS, Inc., Canonsburg, PA.
22.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.10.1017/S0022112072001806
23.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
1978
, Bubbles, Drops, and Particles, Academic Press, New York.
24.
Wang
,
T.
, and
Dhanasekaran
,
T. S.
,
2008
, “
Calibration of CFD Model for Mist/Steam Impinging Jets Cooling
,”
ASME
Paper No. GT2008-50737.10.1115/GT2008-50737
25.
Tomas
,
J.
,
2006
, “
Mechanics of Particle Adhesion
,” Particles on Surfaces 8: Detection, Adhesion and Removal (extended master version), VSP Utrecht. Utrecht, Netherlands, pp.
183
229
.
26.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressor—Causes, Effects, Susceptibility, and Sensitivity
,”
ASME
Paper No. GT2009-59239.10.1115/GT2009-59239
27.
Ahlert
,
K
.,
1994
, “
Effects of Particle Impingiment Angle and Surface Wetting on Solid Particle Erosion of AISI 1018 Steel
,” M.S. thesis, Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK.
28.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
A Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(2), pp.
184
193
.10.1016/S0043-1648(97)00217-2
29.
Tian
,
T.
, and
Ahmadi
,
G.
,
2006
, “
Particle Deposition in Turbulent Duct Flows—Comparisons of Different Model Predictions
,”
J. Aerosol Sci.
,
38
(4), pp.
377
397
.10.1016/j.jaerosci.2006.12.003
30.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2014
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part II: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p. 021010.10.1115/1.4028296
31.
Silingardi
,
A.
,
Astrua
,
P.
,
Piola
,
S.
, and
Ventrucci
,
I.
,
2013
, “
A Method for a Reliable Prediction of Heavy Duty Gas Turbines Performance Degradation Due to Compressor Aging Employing Field Test Data
,” Power Gen Europe, Messe, Wien, Austria, June 4–6.
You do not currently have access to this content.