This paper presents a comprehensive assessment of real gas effects on the performance and matching of centrifugal compressors operating in supercritical CO2. The analytical framework combines first principles based modeling with targeted numerical simulations to characterize the internal flow behavior of supercritical fluids with implications for radial turbomachinery design and analysis. Trends in gas dynamic behavior, not observed for ideal fluids, are investigated using influence coefficients for compressible channel flow derived for real gas. The variation in the properties of CO2 and the expansion through the vapor-pressure curve due to local flow acceleration are identified as possible mechanisms for performance and operability issues observed near the critical point. The performance of a centrifugal compressor stage is assessed at different thermodynamic conditions relative to the critical point using computational fluid dynamics (CFD) calculations. The results indicate a reduction of 9% in the choke margin of the stage compared to its performance at ideal gas conditions due to variations in real gas properties. Compressor stage matching is also impacted by real gas effects as the excursion in corrected mass flow per unit area from inlet to outlet increases by 5%. Investigation of the flow field near the impeller leading edge at high flow coefficients shows that local flow acceleration causes the thermodynamic conditions to reach the vapor-pressure curve. The significance of two-phase flow effects is determined through a nondimensional parameter that relates the time required for liquid droplet formation to the residence time of the flow under saturation conditions. Applying this criterion to the candidate compressor stage shows that condensation is not a concern at the investigated operating conditions. In the immediate vicinity of the critical point however, this effect is expected to become more prominent. While the focus of this analysis is on supercritical CO2 compressors for carbon capture and sequestration (CCS), the methodology is directly applicable to other nonconventional fluids and applications.

References

1.
U.S. EPA
, 2012, “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2012,” U.S. Environmental Protection Agency, Washington, DC, Technical Report No. 430-R-14-003.
2.
Kobayashi
,
S.
, and
Van Hassel
,
B.
,
2005
, “
CO2 Reduction by Oxy-Fuel Combustion: Economics and Opportunities
,” Global Climate and Energy Project (GCEP) Advanced Coal Workshop, Provo, UT, Mar. 15–16.
3.
Wright
,
S.
,
Radel
,
R.
,
Vernon
,
M.
,
Rochau
,
G.
, and
Pickard
,
P.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2010-0171.
4.
Lettieri
,
C.
,
Baltadjiev
,
N.
,
Casey
,
M.
, and
Spakovszky
,
Z.
,
2014
, “
Low-Flow-Coefficient Centrifugal Compressor Design for Supercritical CO2
,”
ASME J. Turbomach.
,
136
(
8
), p.
081008
.10.1115/1.4026322
5.
Lüdtke
,
K. H.
,
2003
,
Process Centrifugal Compressors
,
Springer
, New York, Chap. 2.
6.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
7.
Moore
,
J. J.
, and
Nored
,
M. G.
,
2008
, “
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide
,”
ASME
Paper No. GT2008-50924.10.1115/GT2008-50924
8.
Moore
,
J. J.
,
Lerche
,
A.
,
Allison
,
T.
,
Moreland
,
B.
, and
Pacheco
,
J.
,
2012
, “
Development of an Internally Cooled Centrifugal Compressor for Carbon Capture and Storage Applications
,”
ASME
Paper No. GT2012-69911.10.1115/GT2012-69911
9.
Kimball
,
K. J.
, and
Clementoni
,
E. M.
,
2012
, “
Supercritical Carbon Dioxide Brayton Power Cycle Development Overview
,”
ASME
Paper No. GT2012-68204.10.1115/GT2012-68204
10.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111703
.10.1115/1.4007199
11.
Turchi
,
C. S.
,
Ma
,
Z.
, and
Dyreby
,
J.
,
2012
, “
Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems
,”
ASME
Paper No. GT2012-68932.10.1115/GT2012-68932
12.
Fuller
,
R.
,
Noall
,
J.
, and
Preuss
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2012-68735.10.1115/GT2012-68735
13.
Lee
,
J.
,
Ahn
,
Y.
,
Lee
,
J. I.
, and
Yoon
,
H.
,
2012
, “
Design Methodology of Supercritical CO2 Brayton Cycle Turbomachineries
,”
ASME
Paper No. GT2012-68933.10.1115/GT2012-68933
14.
Pecnik
,
R.
,
Rinaldi
,
E.
, and
Colonna
,
P.
,
2012
, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122301
.10.1115/1.4007196
15.
ANSYS Academic Research
, Release 14.5, Theory Manual, ANSYS, Inc, Canonsburg, PA.
16.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 9.0
,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
17.
Baltadjiev
,
N.
,
2012
, “
An Investigation of Real Gas Effects in Supercritical CO2 Compressors
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
18.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow Concepts and Applications
,
Cambridge University Press
,
New York
.
19.
Cheng
,
D.
,
Fan
,
X.
, and
Yang
,
M.
,
2012
, “
Quasi-1D Compressible Flow of Hydrocarbon Fuel
,”
48th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit
, Atlanta, July 29–Aug. 1,
AIAA
Paper No. 2012-4090.10.2514/6.2012-4090
20.
Thompson
,
P.
,
1971
, “
A Fundamental Derivative in Gas Dynamics
,”
Phys. Fluids
,
14
(
9
), pp.
1843
1849
.10.1063/1.1693693
21.
Schultz
,
J.
,
1985
, “
Polytropic Analysis of Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
84
(
1
), pp.
69
82
.10.1115/1.3673381
22.
Sonntag
,
R.
,
Borgnakke
,
C.
, and
Van Wylen
,
G.
,
2002
,
Fundamentals of Thermodynamics
, 6th ed.,
Wiley
, New York.
23.
McDonald
,
J. E.
,
1962
, “
Homogeneous Nucleation of Vapour Condensation. I. Thermodynamic Aspects
,”
Am. J. Phys.
,
30
(
12
), pp.
870
877
.10.1119/1.1941841
24.
Gyarmathy
,
G.
,
2005
, “
Nucleation of Steam in High-Pressure Nozzle Experiments
,”
J. Power Energy
,
219
(
6
), pp.
511
521
.10.1243/095765005X31388
You do not currently have access to this content.