This paper presents the development of a novel casing treatment to reduce compressor performance and stall margin sensitivities to tip clearance increase. A linked research project on blade design strategies for desensitization had discovered two flow features that reduce sensitivity to tip clearance, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double tip leakage flow. Double tip leakage flow is the flow that exits one tip clearance and enters the tip clearance of the circumferentially adjacent blade instead of convecting downstream out of the blade passage. A new and practical casing treatment was developed and analyzed through Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) simulations to decrease double tip leakage and reduce or even eliminate performance and stall margin sensitivity to tip clearance size. The casing treatment design consists of sawtooth-shaped circumferential indentations placed on the shroud over the rotor with a depth on the order of the tip clearance size. A detailed analysis of the flow field allowed for the elucidation of the flow mechanism associated with this casing treatment. A computational parametric study gave preliminary design rules for minimizing both performance/stall margin sensitivity to tip clearance and nominal performance loss. An improved casing indentation design was produced for which CFD simulations showed a complete desensitization of pressure ratio and stall margin while reducing efficiency sensitivity significantly for the tip clearance range studied with only a very small penalty in nominal pressure ratio. Further simulations showed that this casing treatment can be combined with desensitizing blade design strategies to further reduce tip sensitivity and reduce/eliminate/reverse nominal performance penalty. Lastly, preliminary CFD simulations on an axial compressor stage indicate that this shallow indentations' casing treatment strategy remains effective in a stage environment.

References

1.
Wisler
,
D. C.
,
1985
, “
Aerodynamic Effects of Tip Clearance, Shrouds, Leakage Flow, Casing Treatment and Trenching in Compressor Design
” (Lecture Series 1985-5, von Karman Institute for Fluid Dynamics), Sint-Genesius-Rode, Belgium.
2.
Freeman
,
C.
,
1985
, “
Effect of Tip Clearance Flow on Compressor Stability and Engine Performance
” (Lecture Series 1985-5, von Karman Institute for Fluid Dynamics), Sint-Genesius-Rode, Belgium.
3.
Domercq
,
O.
, and
Escuret
,
J.
,
2007
, “
Tip Clearance Effect on High-Pressure Compressor Stage Matching
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
221
(
6
), pp.
759
767
.
4.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M.
,
Wright
,
P. I.
, and
Place
,
J. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading Part I: University Research and Methods Development
,”
ASME J. Turbomach.
,
124
(
4
), pp.
521
532
.
5.
Passrucker
,
H.
,
Engber
,
M.
,
Kablitz
,
S.
, and
Hennecke
,
D. K.
,
2003
, “
Effect of Forward Sweep in a Transonic Compressor Rotor
,”
Proc. Inst. Mech. Eng.: J. Power Energy
,
217
(
4
), pp.
357
365
.
6.
Takata
,
H.
, and
Tsukuda
,
Y.
,
1977
, “
Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness
,”
ASME J. Eng. Power
,
99
(
1
), pp.
121
133
.
7.
Fujita
,
H.
, and
Takata
,
H.
,
1984
, “
A Study on Configurations of Casing Treatment for Axial Compressors
,”
Bull. JSME
,
27
(
230
), pp.
1675
1681
.
8.
Smith
,
G. D. J.
, and
Cumpsty
,
N. A.
,
1984
, “
Flow Phenomena in Compressor Casing Treatment
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
532
541
.
9.
Lu
,
X.
,
Chu
,
W.
,
Zhu
,
J.
, and
Wu
,
Y.
,
2006
, “
Mechanism of the Interaction Between Casing Treatment and Tip Leakage Flow in a Subsonic Axial Compressor
,”
ASME
Paper No. GT2006-90077.
10.
Seitz
,
P. A.
,
1999
, “
Casing Treatment for Axial Flow Compressors
,” Ph.D. thesis, Cambridge University, London.
11.
Wilke
,
I.
, and
Kau
,
H. P.
,
2003
, “
A Numerical Investigation of the Flow Mechanisms in a HPC Front Stage With Axial Slots
,”
ASME
Paper No. GT2003-38481.
12.
Danner
,
F.
,
Kau
,
H. P.
,
Muller
,
M. M.
,
Schiffer
,
H. P.
, and
Giovanni
,
A. B.
,
2009
,”
Experimental and Numerical Analysis of Axial Skewed Slot Casing Treatments for a Transonic Compressor Stage
,”
ASME
Paper No. GT2009-59647.
13.
Muller
,
M. W.
,
Schiffer
,
P.
, and
Hah
,
C.
,
2007
, “
Effect of Circumferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor
,”
ASME
Paper No. GT2007-27365.
14.
Ramakrishna
,
P. V.
, and
Govardhan
,
M.
,
2010
, “
Study of Sweep and Induced Dihedral Effects in Subsonic Axial Flow Compressor Passages—Part II: Detailed Study of the Effects on Tip Leakage Phenomena
,”
Int. J. Rotating Mach.
,
2010
, p.
491413
.
15.
McNulty
,
G. S.
,
Decker
,
J. J.
,
Beacher
,
B. F.
, and
Khalid
,
S. A.
,
2004
, “
The Impact of Forward Swept Rotors on Tip Clearance Flows in Subsonic Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
445
453
.
16.
Wadia
,
A. R.
,
Hah
,
C. S.
, and
Rabe
,
D.
,
2004
, “
The Impact of Forward Sweep On Tip Clearance Flows in Transonic Compressors
,”
24th International Congress of the Aeronautical Sciences
(
ICAS
), Yokohama, Japan, Aug. 29–Sept. 3, Paper No. ICAS 2004-6.2.1.
17.
Tschirner
,
T.
,
Johann
,
E.
,
Muller
,
R.
, and
Vogeler
,
K.
,
2006
, “
Effects of 3D Aerofoil Tip Clearance Variation on a 4-Stage Low Speed Compressor
,”
ASME
Paper No. GT2006–90902.
18.
Sakulsaew
,
S.
,
Tan
,
C. S.
,
Donahoo
,
E.
,
Cornelius
,
C.
, and
Montgomery
,
M.
,
2013
, “
Compressor Efficiency Variation With Rotor Tip Gap Variation From Vanishing to Large Clearance
,”
ASME J. Turbomach.
,
135
(
3
), p.
031030
.
19.
Erler
,
E.
,
Vo
,
H. D.
, and
Yu
,
H.
,
2015
,”
Desensitization of Axial Compressor Performance and Stability to Tip Clearance Flow
,”
ASME J. Turbomach.
,
138
(
3
), p.
031006
.
20.
Cevik
,
M.
,
2014
, “
Axial Compressor Gas Path Design For Desensitization of Aerodynamic Performance and Stability to Tip Clearance
,” Ph.D. thesis, Ecole Polytechnique de Montreal, Montreal, QC, Canada.
21.
ANSYS
,
2006
, “
Innovative Turbulence Modeling: SST Model in ansys CFX
,”
ANSYS, Inc.
,
Canonsburg, PA
.
22.
Liu
,
Y.
,
Yu
,
X.
, and
Liu
,
B.
,
2008
, “
Turbulence Models Assessment for Large-Scale Tip Vortices in Axial Compressor Rotor
,”
J. Propul. Power
,
24
(
1
), pp.
15
25
.
23.
Erler
,
E.
,
2012
, “
Axial Compressor Blade Design for Desensitization of Aerodynamic Performance and Stability to Tip Clearance
,” Doctoral thesis, Ecole Polytechnique de Montreal, Montreal, QC, Canada.
24.
Van Zante
,
D. E.
,
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Okiishi
,
T. H.
,
2000
, “
Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors
,”
ASME J. Turbomach.
,
122
(
4
), pp.
733
742
.
25.
ANSYS
,
2010
, “
ansys CFX-Solver Modeling Guide
,”
ANSYS
, Canonsburg, PA, pp.
158
160
.
26.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
27.
Hah
,
C.
,
Bergner
,
J.
, and
Schiffer
,
H. P.
,
2006
, “
Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Criteria and Mechanism
,”
ASME
Paper No. GT2006-90045.
28.
Chen
,
J.-P.
,
Hathaway
,
M. D.
, and
Herrick
,
G. P.
,
2008
, “
Prestall Behavior of a Transonic Axial Compressor Stage Via Time-Accurate Numerical Simulation
,”
ASME J. Turbomach.
,
130
(
4
), p.
041014
.
29.
Deppe
,
A.
,
Saathoff
,
H.
, and
Stark
,
U.
,
2005
, “
Spike-Type Stall Inception in Axial-Flow Compressors
,”
6th European Conference on Turbomachinery—Fluid Dynamics and Thermodynamics
, Lille, France, Mar. 7–11, pp.
178
188
.
30.
Bennington
,
M. A.
,
Cameron
,
J. D.
,
Morris
,
S. C.
, and
Gendrich
,
C. P.
,
2007
, “
Over Rotor Casing Surface Streak Measurements in a High Speed Axial Compressor
,”
ASME
Paper No. GT2007-28273.
You do not currently have access to this content.