Superior rotor tip geometries possess the potential to simultaneously mitigate aerodynamic losses and severe thermal loads onto the rotor overtip region. However, classical design strategies are usually constrained to a specific type of geometry, narrowing the spread of shape topologies considered during the design phase. The current paper presents two novel multi-objective optimization methodologies that enable the exploration of a broad range of distinct tip configurations for unshrouded rotor blades. The first methodology is a shape optimization process that creates a fully carved blade tip shape defined through a Bezier surface controlled by 40 parameters. Combined with a differential evolution (DE) optimization strategy, this approach is applied to a rotor blade for two tip gap sizes: 0.85% (tight) and 1.38% (design) of the blade span. The second methodology is based on a topology optimization process that targets the creation of arbitrary tip shapes comprising one or multiple rims with a fixed height. The tip section of the blade has been divided into more than 200 separate zones, where each zone can be either part of an upstanding rim or part of the cavity floor. This methodology was tested with a level-set approach in combination with a DE optimizer and coupled to an optimization routine based on genetic algorithms (GAs). The current study was carried out on a modern high-pressure turbine operating at engine-like Reynolds and high subsonic outlet Mach numbers. A fully hexahedral unstructured mesh was used to discretize the fluid domain. The aerothermal performance of each tip profile was evaluated accurately through Reynolds-averaged Navier–Stokes (RANS) simulations adopting the shear-stress transport (SST) turbulence model. Multi-objective optimizations were set for both design strategies that target higher aerodynamic rotor efficiencies and simultaneous minimization of the heat load. This paper illustrates a wide variety of profiles obtained throughout the optimization and compares the performance of the different strategies. The research shows the potential of such novel methodologies to reach new unexplored types of blade tip designs with enhanced aerothermal performances.

References

1.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
2.
Bunker
,
R. S.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
64
79
.
3.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J.
,
2012
, “
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.
4.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2006
, “
Heat Transfer and Aerodynamics of Turbine Blade Tips in a Linear Cascade
,”
ASME J. Turbomach.
,
128
(
2
), pp.
300
309
.
5.
Key
,
N. L.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.
6.
Mischo
,
B.
,
Behr
,
T.
, and
Abhari
,
R. S.
,
2008
, “
Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load
,”
ASME J. Turbomach.
,
130
(
2
), p.
021008
.
7.
Harvey
,
N. W.
,
Newman
,
D. A.
,
Haselbach
,
F.
, and
Willer
,
L.
,
2006
, “
An Investigation Into a Novel Turbine Rotor Winglet: Part I—Design and Model Rig Test Results
,”
ASME
Paper No. GT2006-90459.
8.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Oldfield
,
M. L. G.
,
Ligrani
,
P. M.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2011
, “
Aerothermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
133
(
4
), p.
041026
.
9.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamics Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.
10.
Shyam
,
V.
, and
Ameri
,
A.
,
2011
, “
Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating
,”
ASME
Paper No. GT2011-46390.
11.
Zhang
,
Q.
, and
He
,
L.
,
2013
, “
Tip-Shaping for HP Turbine Blade Aerothermal Performance Management
,”
ASME J. Turbomach.
135
(
5
), p.
051025
.
12.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2014
, “
Blade Tip Shape Optimization for Enhanced Turbine Aerothermal Performance
,”
ASME J. Turbomach.
,
136
(
4
), p.
041016
.
13.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2015
, “
Blade Tip Carving Effects on the Aerothermal Performance of a Transonic Turbine
,”
ASME J. Turbomach.
,
137
(
2
), p.
021005
.
14.
Shahpar
,
S.
, and
Caloni
,
S.
,
2013
, “
Aerodynamic Optimization of High-Pressure Turbines for Lean-Burn Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
055001
.
15.
Rozvany
,
G.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidisc. Optim.
,
37
(
3
), pp.
217
237
.
16.
Othmer
,
C.
,
2006
, “
CFD Topology and Shape Optimization With Adjoint Methods
,” VDI Fahrzeug- und Verkehrstechnik, 13 Internationaler Kongress Berechnung und Simulation im Fahrzeugbau (Wurzburg), Vol.
1967
, p.
61
.
17.
Andreasen
,
C. S.
,
Gersborg
,
A. R.
, and
Sigmund
,
O.
,
2009
, “
Topology Optimization of Microfluidic Mixers
,”
Int. J. Numer. Methods Fluids
,
61
(
5
), pp.
498
513
.
18.
Kontoleontos
,
E. A.
,
Papoutsis-Kiachagias
,
E. M.
,
Zymaris
,
A. S.
,
Papadimitriou
,
D. I.
, and
Giannakoglou
,
K. C.
,
2013
, “
Adjoint-Based Constrained Topology Optimization for Viscous Flows, Including Heat Transfer
,”
Eng. Optim.
,
45
(
8
), pp.
941
961
.
19.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.
20.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
21.
Menter
,
F. R
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
22.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2013
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME
Paper No. TBTS2013-2057.
23.
Hofer
,
T.
,
Legrand
,
M.
,
Pons
,
L.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Leakage Flow for a Blade With a Squealer Tip at Transonic Conditions
,”
8th European Turbomachinery Conference
, Graz, Austria, Mar. 23–27, pp.
1483
1494
.
24.
Hofer
,
T.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions
,”
ASME
Paper No. GT2009-59909.
25.
Naik
,
S.
,
Georgakis
,
C.
,
Hofer
,
T.
, and
Lengani
,
D.
,
2011
, “
Heat Transfer and Film Cooling of Blade Tips and Endwalls
,”
ASME J. Turbomach.
,
134
(
4
), p.
041004
.
26.
Vass
,
P.
, and
Arts
,
T.
,
2011
, “
Numerical Investigation of High-Pressure Turbine Blade Tip Flows: Analysis of Aerodynamics
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
7
), pp.
940
953
.
27.
Olive
,
R.
,
Lavagnoli
,
S.
,
De Maesschalck
,
C.
, and
Paniagua
,
G.
,
2014
, “
Procédé de modélisation d'une baignoire d'une aube
,” FR Brevet d'Invention, July 10, Paper No. FR1456680.
28.
Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
437
472
.
29.
Verstraete
,
T.
,
Amaral
,
S.
,
Van den Braembussche
,
R. A.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part II: Optimization
,”
ASME J. Turbomach.
,
132
(
2
), p.
021014
.
30.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.
31.
Holland
,
J. H.
,
1975
,
Adaption in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
32.
Rechenberg
,
I.
,
1973
,
Evolutionsstrategie—Optimierung technischer Systeme nach Prinzipien der biologischen Evolution
,
Fommann-Holzboog
,
Stuttgart, Germany
.
33.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
34.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
35.
Montgomery
,
D. C.
,
1997
,
Design and Analysis of Experiments
,
Wiley
,
New York
.
You do not currently have access to this content.