In this paper, we establish a benchmark data set of a generic high-pressure (HP) turbine vane generated by direct numerical simulation (DNS) to resolve fully the flow. The test conditions for this case are a Reynolds number of 0.57 × 106 and an exit Mach number of 0.9, which is representative of a modern transonic HP turbine vane. In this study, we first compare the simulation results with previously published experimental data. We then investigate how turbulence affects the surface flow physics and heat transfer. An analysis of the development of loss through the vane passage is also performed. The results indicate that freestream turbulence tends to induce streaks within the near-wall flow, which augment the surface heat transfer. Turbulent breakdown is observed over the late suction surface, and this occurs via the growth of two-dimensional Kelvin–Helmholtz spanwise roll-ups, which then develop into lambda vortices creating large local peaks in the surface heat transfer. Turbulent dissipation is found to significantly increase losses within the trailing-edge region of the vane.

References

1.
Arts
,
T.
,
Lambert
,
R.
, and
Rutherford
,
A. W.
,
1990
,
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade (von Karman Institute Technical Note
), Vol.
174
,
von Karman Institute for Fluids Dynamics
,
Brussels, Belgium
.
2.
Nicholson
,
J. H.
,
Forest
,
A. E.
,
Oldfield
,
M. L. G.
, and
Schultz
,
D. L.
,
1984
, “
Heat Transfer Optimized Turbine Rotor Blades—An Experimental Study Using Transient Techniques
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
173
182
.
3.
Consigny
,
H.
, and
Richards
,
B. E.
,
1982
, “
Short Duration Measurements of Heat Transfer Rate to a Gas Turbine Rotor Blade
,”
J. Eng. Power
,
104
(
3
), pp.
542
550
.
4.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.
5.
Dring
,
R. P.
,
Blair
,
M. F.
,
Joslyn
,
H. D.
,
Power
,
G. D.
, and
Verdon
,
J. M.
,
1986
, “
The Effects of Inlet Turbulence and Rotor/Stator Interactions on Aerodynamics and Heat Transfer of a Large-Scale Rotating Turbine Model
,” NASA Contractor Report 4079.
6.
Hodson
,
H. P.
,
1984
, “
Boundary Layer and Loss Measurements on the Rotor of an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
391
399
.
7.
Mayle
,
R. E.
, and
Dullenkopf
,
K.
,
1990
, “
A Theory for Wake Induced Transition
,”
ASME J. Turbomach.
,
112
(
2
), pp.
188
195
.
8.
Allan
,
W. D.
,
Ainsworth
,
R.
, and
Thorpe
,
S.
,
2008
, “
Unsteady Heat Transfer Measurements From Transonic Turbine Blades at Engine Representative Conditions in a Transient Facility
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
041901
.
9.
Didier
,
F.
,
Dénos
,
R.
, and
Arts
,
T.
,
2002
, “
Unsteady Rotor Heat Transfer in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
124
(
4
), pp.
614
622
.
10.
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2004
, “
Heat-Transfer Measurements and Predictions for the Vane and Blade of a Rotating High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
126
(
1
), pp.
101
109
.
11.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Barter
,
J. W.
,
Green
,
B. R.
, and
Bergholz
,
R. F.
,
2005
, “
Aerodynamic and Heat-Flux Measurements With Predictions on a Modern One and One-Half State High Pressure Transonic Turbine
,”
ASME J. Turbomach.
,
127
(
3
), pp.
522
523
.
12.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
(
1
), pp.
1
7
.
13.
Dunn
,
M. G.
,
2001
, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
,
123
(
4
), pp.
637
686
.
14.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
,
122
(
2
), pp.
255
262
.
15.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2002
, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
124
(
1
), pp.
107
118
.
16.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.
17.
Holmberg
,
D. G.
, and
Diller
,
T. E.
,
2005
, “
Simultaneous Heat Flux and Velocity Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
127
(
3
), pp.
502
506
.
18.
Fransen
,
R.
,
Collado
,
E.
,
Duchaine
,
F.
,
Gourdain
,
N.
,
Gicquel
,
L.
,
Vial
,
L.
, and
Bonneau
,
G.
,
2011
, “
Comparison of RANS and LES in High Pressure Turbines
,”
3me Colloque
INCA
,
ONERA, Toulouse
, France, Nov. 17–18.
19.
Gourdain
,
N.
,
Gicquel
,
L.
, and
Collado
,
E.
,
2012
, “
Comparison of RANS and LES for Prediction of Wall Heat Transfer in a Highly Loaded Turbine Guide Vane
,”
J. Propul. Power
,
28
(
2
), pp.
423
433
.
20.
Gourdain
,
N.
,
Gicquel
,
L.
,
Fransen
,
R.
,
Collado
,
E.
, and
Arts
,
T.
,
2011
, “
Application of RANS and LES to the Prediction of Flows in High Pressure Turbine Components
,”
ASME
Paper No. GT2011-46518.
21.
Wissink
,
J.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulation of Flow and Heat Transfer in a Turbine Cascade With Incoming Wakes
,”
J. Fluid Mech.
,
569
, pp.
209
247
.
22.
Sandberg
,
R.
,
Pichler
,
R.
, and
Chen
,
L.
,
2012
, “
Assessing the Sensitivity of Turbine Cascade Flow to Inflow Disturbances Using Direct Numerical Simulation
,”
13th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
(
ISUAAAT-13
).
23.
Chen
,
L.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2013
, “
Compressible DNS of a Low Pressure Turbine Subjected to Inlet Disturbances
,”
DLES9: Workshop on Direct and Large-Eddy Simulation
,
Dresden, Germany
, Apr. 3–5.
24.
Sandberg
,
R. D.
,
Pichler
,
R.
,
Chen
,
L.
,
Johnstone
,
R.
, and
Michelassi
,
V.
,
2014
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines: Part I Methodology
,”
ASME
Paper No. GT2014-25685.
25.
Michelassi
,
V.
,
Sandberg
,
R. D.
,
Pichler
,
R.
, and
Chen
,
L.
,
2014
,
Compressible Direct Numerical Simulation of Low-Pressure Turbines: Part II Effect of Inflow Disturbances
,”
ASME
Paper No. GT2014-25689.
26.
Edwards
,
T.
, and
Sandberg
,
R. D.
,
2011
,
Cray Centre of Excellence Project Report
,” www.hector.ac.uk/coe/pdf/HiPSTAR OMP Report.pdf
27.
Kennedy
,
C.
,
Carpenter
,
M.
, and
Lewis
,
R.
,
2000
, “
Low-Storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations
,”
Appl. Numer. Math.
,
35
(
3
), pp.
177
219
.
28.
Kennedy
,
C.
, and
Gruber
,
A.
,
2008
, “
Reduced Aliasing Formulations of the Convective Terms Within the Navier—Stokes Equations for a Compressible Fluid
,”
J. Comput. Phys.
,
227
(
3
), pp.
1676
1700
.
29.
Sandberg
,
R. D.
,
Suponitsky
,
V.
, and
Sandham
,
N. D.
,
2010
, “
DNS of a Canonical Nozzle Flow
,”
ERCOFTAC
Workshop Direct and Large-Eddy Simulations 8.
30.
Sandberg
,
R. D.
,
2012
, “
Numerical Investigation of Turbulent Supersonic Axisymmetric Wakes
,”
J. Fluid Mech.
,
702
(
6
), pp.
488
520
.
31.
Sandberg
,
R. D.
,
Sandham
,
N.
, and
Suponitsky
,
V.
,
2012
, “
DNS of Compressible Pipe Flow Exiting Into a Coflow
,”
Int. J. Heat Fluid Flow
,
35
, pp.
33
44
.
32.
Wheeler
,
A. P. S.
, and
Sandberg
,
R. D.
,
2012
, “
Direct Numerical Simulation of a Transonic Turbine Tip Flow
,”
13th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines (ISUAAAT-13)
.
33.
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2006
, “
Nonreflecting Zonal Characteristic Boundary Condition for Direct Numerical Simulation of Aerodynamic Sound
,”
AIAA J.
,
44
(
2
), pp.
402
405
.
34.
Arts
,
T.
,
2014
, private communication.
35.
Yao
,
Y.
,
Thomas
,
T.
, and
Sandham
,
N. D.
,
2001
, “
Direct Numerical Simulation of Turbulent Flow Over a Rectangular Trailingedge
,”
Theor. Comput. Fluid Dyn.
,
14
(
5
), pp.
337
358
.
36.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
223
249
.
37.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
38.
Anthony
,
R. J.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
2005
, “
High Frequency Surface Heat Flux Imaging of Bypass Transition
,”
ASME J. Turbomach.
,
127
(
2
), pp.
241
250
.
39.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
You do not currently have access to this content.