The present work is part of a comprehensive heat transfer and film-cooling study on a locally cooled nonaxisymmetric contoured turbine endwall. A new test rig consisting of a linear cascade of three prismatic vanes at unity scale and exchangeable endwall has been established. The rig is operated in an open-loop configuration at a reduced main gas temperature of 425 K, an exit Mach number of 0.5, and an exit Reynolds number of 1.6 × 106. Air is used both as main gas and coolant; a realistic density ratio is achieved by cooling the coolant below freezing. In the first part of the study, aerodynamic measurements are presented. This paper concentrates on film cooling of the contoured endwall with special emphasis on data acquisition and reduction for the application of the superposition principle of film cooling. The first experimental results from thermographic measurements are discussed.

References

1.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
2.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.
3.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propulsion Power
,
22
(
2
), pp.
301
312
.
4.
Wang
,
H.
,
Olson
,
S.
,
Goldstein
,
R.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
5.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2008
, “
The Effect of Combustor-Turbine Interface Gap Leakage on the Endwall Heat Transfer for a Nozzle Guide Vane
,”
ASME J. Turbomach.
,
130
(
4
), p.
041019
.
6.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.
7.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2010
, “
An Experimental Study of Airfoil and Endwall Heat Transfer on a Linear Turbine Blade Cascade—secondary Flow and Surface Roughness Effects
,”
Heat Transfer Res.
,
41
(
8
), pp.
867
887
.
8.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design—Part I: Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
9.
Schüpbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls—Part II: Time-Resolved Flow Physics
,”
ASME J. Turbomach.
,
132
(
2
), p.
021008
.
10.
Laveau
,
B.
,
Abhari
,
R. S.
,
Crawford
,
M. E.
, and
Lutum
,
E.
,
2013
, “
High Resolution Heat Transfer Measurement on Flat and Contoured Endwalls in a Linear Cascade
,”
ASME J. Turbomach.
,
135
(
4
), p.
041020
.
11.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Semmler
,
K.
,
2000
, “
Film Cooling on a Convex Surface With Zero Pressure Gradient Flow
,”
Int. J. Heat Mass Transfer
,
43
(
16
), pp.
2973
2987
.
12.
Schwarz
,
S. G.
, and
Goldstein
,
R. J.
,
1989
, “
The Two-Dimensional Behavior of Film Cooling Jets on Concave Surfaces
,”
ASME J. Turbomach.
,
111
(
2
), pp.
124
130
.
13.
Choe
,
H.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
,
1974
, “
The Superposition Approach to Film-Cooling
,”
ASME
Paper No. 74-WA/GT-27.
14.
Jones
,
T. V.
,
1991
, “
Definition of Heat Transfer Coefficients in the Turbine Situation
,” Turbomachinery: Latest Developments in a Changing Scene, European Conference, London, Mar. 19–20,
Institution of Mechanical Engineers
,
London
, Paper No. C423/046, pp.
201
206
.
15.
Gritsch
,
M.
,
Baldauf
,
S.
,
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
The Superposition Approach to Local Heat Transfer Coefficients in High Density Ration Film Cooling Flows
,”
ASME
Paper No. 99-GT-168.
16.
Kneer
,
J.
,
Pütz
,
F.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2014
, “
Application of the Superposition Principle of Film Cooling on a Non-Axisymmetric Turbine Endwall
,”
15th International Symposium on Rotating Machinery, ISROMAC-15
,
Honolulu, HI
, Feb. 24–28.
17.
Pütz
,
F.
,
Kneer
,
J.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2015
, “
A New Test Facility to Investigate Film Cooling on a Non-Axisymmetric Contoured Turbine Endwall—Part I: Introduction and Aerodynamic Measurements
,”
ASME
Paper No. GT2015-42272.
18.
Krückels
,
J.
,
Colban
,
W.
,
Gritsch
,
M.
, and
Schnieder
,
M.
,
2011
, “
Validation of a First Vane Platform Cooling Design
,”
ASME
Paper No. GT2011-45252.
19.
Roach
,
P.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
20.
Lohrengel
,
J.
, and
Todtenhaupt
,
R.
,
1996
, “
Wärmeleitfähigkeit, Gesamtemissionsgrade und spektrale Emissionsgrade der Beschichtung Nextel-Velvet-Coating 811-21 (RAL 900 15 tiefschwarz matt)
,”
PTB-Mitt.
,
106
(
4
), pp.
259
266
.
21.
Ochs
,
M.
,
Horbach
,
T.
,
Schulz
,
A.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2009
, “
A Novel Calibration Method for an Infrared Thermography System Applied to Heat Transfer Experiments
,”
Meas. Sci. Technol.
,
20
(
7
), p.
075103
.
22.
Ochs
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2010
, “
High Dynamic Range Infrared Thermography by Pixelwise Radiometric Self Calibration
,”
Infrared Phys. Technol.
,
53
(
2
), pp.
112
119
.
You do not currently have access to this content.