The present work is part of a comprehensive heat transfer and film-cooling study on a locally cooled nonaxisymmetric contoured turbine endwall. A new test rig consisting of a linear cascade of three prismatic vanes at unity scale and exchangeable endwall has been established. The rig is operated in an open-loop configuration at a reduced main gas temperature of 425 K, an exit Mach number of 0.5, and an exit Reynolds number of 1.6 × 106. Air is used both as main gas and coolant; a realistic density ratio is achieved by cooling the coolant below freezing. In the first part of the study, aerodynamic measurements are presented. This paper concentrates on film cooling of the contoured endwall with special emphasis on data acquisition and reduction for the application of the superposition principle of film cooling. The first experimental results from thermographic measurements are discussed.
Skip Nav Destination
Article navigation
July 2016
Research-Article
A New Test Facility to Investigate Film Cooling on a Nonaxisymmetric Contoured Turbine Endwall—Part II: Heat Transfer and Film Cooling Measurements
Johannes Kneer,
Johannes Kneer
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
e-mail: johannes.kneer@kit.edu
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
e-mail: johannes.kneer@kit.edu
Search for other works by this author on:
Franz Puetz,
Franz Puetz
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Search for other works by this author on:
Achmed Schulz,
Achmed Schulz
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Search for other works by this author on:
Hans-Jörg Bauer
Hans-Jörg Bauer
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Search for other works by this author on:
Johannes Kneer
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
e-mail: johannes.kneer@kit.edu
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
e-mail: johannes.kneer@kit.edu
Franz Puetz
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Achmed Schulz
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Hans-Jörg Bauer
Institut für Thermische Strömungsmaschinen,
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
Karlsruher Institut für Technologie (KIT),
Karlsruhe 76131, Germany
1Corresponding author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received November 17, 2015; final manuscript received December 23, 2015; published online February 17, 2016. Editor: Kenneth C. Hall.
J. Turbomach. Jul 2016, 138(7): 071004 (8 pages)
Published Online: February 17, 2016
Article history
Received:
November 17, 2015
Revised:
December 23, 2015
Citation
Kneer, J., Puetz, F., Schulz, A., and Bauer, H. (February 17, 2016). "A New Test Facility to Investigate Film Cooling on a Nonaxisymmetric Contoured Turbine Endwall—Part II: Heat Transfer and Film Cooling Measurements." ASME. J. Turbomach. July 2016; 138(7): 071004. https://doi.org/10.1115/1.4032364
Download citation file:
Get Email Alerts
Cited By
Related Articles
Experimental Study on the Endwall Aerothermal Performance of Turbine Cascades in a Novel Transient Test Facility
J. Thermal Sci. Eng. Appl (November,2024)
Direct Measurement of Heat Transfer Coefficient Augmentation at Multiple Density Ratios
J. Turbomach (January,2017)
Effects of Coolant Density, Specific Heat Capacity, and Biot Number on Turbine Vane Cooling Effectiveness
J. Turbomach (November,2017)
Experimental Study of Effusion Cooling With Pressure-Sensitive Paint
J. Eng. Gas Turbines Power (May,2017)
Related Proceedings Papers
Related Chapters
Summary
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
Design of Indian Pressurized Heavy Water Reactors
Global Applications of the ASME Boiler & Pressure Vessel Code
Studies Performed
Closed-Cycle Gas Turbines: Operating Experience and Future Potential