Rotating stall is a well-known aerodynamic instability in compressors that limits the operating envelope of aircraft gas turbine engines. An innovative method for delaying the most common form of rotating stall inception using an annular dielectric barrier discharge (DBD) plasma actuator had been proposed. A DBD plasma actuator is a simple solid-state device that converts electricity directly into flow acceleration through partial air ionization. However, the proposed concept had only been preliminarily evaluated with numerical simulations on an isolated axial rotor using a relatively basic CFD code. This paper provides both an experimental and a numerical assessment of this concept for an axial compressor stage as well as a centrifugal compressor stage, with both stages being part of a low-speed two-stage axial-centrifugal compressor test rig. The two configurations studied are the two-stage configuration with a 100 mN/m annular casing plasma actuator placed just upstream of the axial rotor leading edge (LE) and the single-stage centrifugal compressor with the same actuator placed upstream of the impeller LE. The tested configurations were simulated with a commercial RANS CFD code (ansys cfx) in which was implemented the latest engineering DBD plasma model and dynamic throttle boundary condition, using single-passage multiple blade row computational domains. The computational fluid dynamics (CFD) simulations indicate that in both types of compressors, the actuator delays the stall inception by pushing the incoming/tip clearance flow interface downstream into the blade passage. In each case, the predicted reduction in stalling mass flow matches the experimental value reasonably well.

References

1.
Day
,
I. J.
,
1976
, “Axial Compressor Stall,” Doctoral dissertation, University of Cambridge, Cambridge, UK.
2.
Paduano
,
J. D.
,
Greitzer
,
E.
, and
Epstein
,
A.
,
2001
, “
Compression System Stability and Active Control
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
491
517
.
3.
Moore
,
F.
,
1984
, “
A Theory of Rotating Stall of Multistage Axial Compressors: Part I—Small Disturbances
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
313
320
.
4.
Haynes
,
J. M.
,
Hendricks
,
G. J.
, and
Epstein
,
A. H.
,
1994
, “
Active Stabilization of Rotating Stall in a Three-Stage Axial Compressor
,”
ASME J. Turbomach.
,
116
(
2
), pp.
226
239
.
5.
Vo
,
H. D.
, and
Paduano
,
J. D.
,
1998
, “
Experimental Development of a Jet Injection Model for Rotating Stall Control
,”
ASME
Paper No. 98-GT-308.
6.
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Frechette
,
L. G.
,
Epstein
,
A. H.
,
Greitzer
,
E. M.
,
Bright
,
M. M.
, and
Strazisar
,
A. J.
,
1998
, “
Active Stabilization of Rotating Stall and Surge in a Transonic Single Stage Axial Compressor
,”
ASME J. Turbomach.
,
120
(
4
), pp.
625
636
.
7.
Silkowski
,
P. D.
,
1995
, “
Measurements of Rotor Stalling in a Matched and a Mismatched Multistage Compressor
,”
Massachusetts Institute of Technology Gas Turbine Laboratory, Cambridge, MA, GTL Report No. 221
.
8.
Camp
,
T.
, and
Day
,
I.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.
9.
Day
,
I.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
10.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
11.
Chen
,
J.-P.
,
Hathaway
,
M. D.
, and
Herrick
,
G. P.
,
2008
, “
Prestall Behavior of a Transonic Axial Compressor Stage Via Time-Accurate Numerical Simulation
,”
ASME J. Turbomach.
,
130
(
4
), p.
041014
.
12.
Bennington
,
M. A.
,
Cameron
,
J. D.
,
Morris
,
S. C.
, and
Gendrich
,
C. P.
,
2007
, “
Over Rotor Casing Surface Streak Measurements in a High Speed Axial Compressor
,”
ASME
Paper No. GT2007-28273.
13.
Deppe
,
A.
,
Saathoff
,
H.
, and
Stark
,
U.
,
2005
, “
Spike-Type Stall Inception in Axial Flow Compressors
,”
6th Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Lille, France
, Mar. 7–11.
14.
Nie
,
C.
,
Tong
,
Z.
,
Geng
,
S.
,
Zhu
,
J.
, and
Huang
,
W.
,
2007
, “
Experimental Investigations of Micro Air Injection to Control Rotating Stall
,”
J. Therm. Sci.
,
16
(
1
), pp.
1
6
.
15.
Vo
,
H. D.
,
2007
, “
Suppression of Short Length-Scale Rotating Stall Inception With Glow Discharge Actuation
,”
ASME
Paper No. GT2007-27673.
16.
Vo
,
H. D.
,
2010
, “
Rotating Stall Suppression in Axial Compressors With Casing Plasma Actuation
,”
J. Propul. Power
,
26
(
4
), pp.
808
818
.
17.
Enloe
,
C.
,
McLaughlin
,
T. E.
,
Van Dyken
,
R. D.
,
Kachner
,
K.
,
Jumper
,
E. J.
, and
Corke
,
T. C.
,
2004
, “
Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology
,”
AIAA J.
,
42
(
3
), pp.
589
594
.
18.
Gregory
,
J. W.
,
Enloe
,
C. L.
,
Font
,
G. I.
, and
McLaughlin
,
T. E.
,
2007
, “
Force Production Mechanisms of a Dielectric-Barrier Discharge Plasma Actuator
,”
AIAA
Paper No. 2007-185.
19.
Kogelschatz
,
U.
,
2003
, “
Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications
,”
Plasma Chem. Plasma Process.
,
23
(
1
), pp.
1
46
.
20.
Corke
,
T. C.
, and
Post
,
M. L.
,
2005
, “
Overview of Plasma Flow Control: Concepts, Optimization, and Applications
,”
AIAA
Paper No. 2005-563.
21.
Corke
,
T. C.
,
Post
,
M. L.
, and
Orlov
,
D. M.
,
2009
, “
Single Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Physics, Modeling and Applications
,”
Exp. Fluids
,
46
(
1
), pp.
1
26
.
22.
Huang
,
J.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
,
2006
, “
Plasma Actuators for Separation Control of Low-Pressure Turbine Blades
,”
AIAA J.
,
44
(
1
), pp.
51
57
.
23.
Post
,
M. L.
, and
Corke
,
T. C.
,
2004
, “
Separation Control Using Plasma Actuators-Stationary and Oscillating Airfoils
,”
AIAA
Paper No. 2004-841.
24.
Potočar
,
E.
,
Širok
,
B.
,
Hočevar
,
M.
, and
Eberlinc
,
M.
,
2012
, “
Control of Separation Flow Over a Wind Turbine Blade With Plasma Actuators
,”
Strojniski Vestnik/J. Mech. Eng.
,
58
(
1
), pp.
37
45
.
25.
Lemire
,
S.
, and
Vo
,
H. D.
,
2011
, “
Reduction of Fan and Compressor Wake Defect Using Plasma Actuation for Tonal Noise Reduction
,”
ASME J. Turbomach.
,
133
(
1
), p.
011017
.
26.
Jothiprasad
,
G.
,
Wadia
,
A.
,
Breeze-Stringfellow
,
A.
,
Murray
,
R. C.
,
Essenhigh
,
K.
,
Bennett
,
G. A.
, and
Saddoughi
,
S.
,
2012
, “
Control of Tip-Clearance Flow in a Low Speed Axial Compressor Rotor With Plasma Actuation
,”
ASME J. Turbomach.
,
134
(
2
), p.
021019
.
27.
Vo
,
H. D.
,
Cameron
,
J. D.
, and
Morris
,
S. C.
,
2008
, “
Control of Short Length-Scale Rotating Stall Inception on a High-Speed Axial Compressor With Plasma Actuation
,”
ASME
Paper No. GT2008-50967.
28.
Japikse
,
D.
,
1988
,
Centrifugal Compressor Design and Performance
:
Concepts ETI
,
Wilder, VT
.
29.
Skoch
,
G. J.
,
2003
, “
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
,”
ASME J. Turbomach.
,
125
(
4
), pp.
704
713
.
30.
Vo
,
H. D.
, and
Trepanier
,
J. Y.
,
2015
, “
Undergraduate Project in Compressor Rig Design, Fabrication and Testing for Complete Engineering Training
,”
ASME
Paper No. GT2015-43039.
31.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
32.
Xu
,
X.
,
Vo
,
H. D.
,
Mureithi
,
N.
, and
Zhang
,
X. F.
,
2010
, “
Turbulent Boundary Layer Separation Control by Using DBD Plasma Actuators: Part I—Experimental Investigation
,”
ASME
Paper No. IMECE2010-37324.
33.
Versailles
,
P.
,
Gingras-Gosselin
,
V.
, and
Vo
,
H. D.
,
2010
, “
Impact of Pressure and Temperature on the Performance of Plasma Actuators
,”
AIAA J.
,
48
(
4
), pp.
859
863
.
34.
Ashrafi
,
F.
,
2014
, “
Delay of Rotating Stall in Compressors Using Plasma Actuation
,” M.Sc. thesis, Ecole Polytechnique de Montreal, Montréal, QC, Canada.
35.
Dumas
,
M.
,
Vo
,
H. D.
, and
Yu
,
H.
,
2015
, “
Post-Surge Load Prediction for Multi-Stage Compressors Via CFD Simulations
,”
ASME
Paper No. GT2015-42748.
36.
Van Zante
,
D. E.
,
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Okiishi
,
T. H.
,
2000
, “
Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors
,”
ASME J. Turbomach.
,
122
(
4
), pp.
733
742
.
37.
ANSYS
,
2010
,
“CFX, Solver Theory Guide,” Release 13.0, ANSYS Inc., Canonsburg, PA
.
You do not currently have access to this content.