The state-of-the-art design of turbomachinery components is based on Reynolds-averaged Navier–Stokes (RANS) solutions. RANS solvers model the effects of turbulence and boundary layer transition and therefore allow for a rapid prediction of the aerodynamic behavior. The only drawback is that modeling errors are introduced to the solution. Researchers and computational fluid dynamics developers are working on reducing these errors by improved model calibrations which are based on experimental data. These experiments do not typically, however, offer detailed insight into three-dimensional flow fields and the evolution of model quantities in an actual machine. This can be achieved through a direct step-by-step comparison of model quantities between RANS and direct numerical simulation (DNS). In the present work, the experimentally obtained model correlations are recomputed based on DNS of the same turbine profile simulated by RANS. The actual local values are compared to the modeled RANS results, providing information about the source of model deficits. The focus is on the transition process on the blade suction side (SS) and on evaluating the development of turbulent flow structures in the blade's wake. It is shown that the source of disagreement between RANS and DNS can be traced back to three major deficiencies that should be the focus of further model improvements.

References

1.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1309
.
2.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
3.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
4.
Kožulović
,
D.
,
Röber
,
T.
, and
Nürnberger
,
D.
,
2007
, “
Application of a Multimode Transition Model to Turbomachinery Flows
,”
7th European Turbomachinery Conference
, Athens, Greece, Mar. 5–9.
5.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.
6.
Bode
,
C.
,
Aufderheide
,
T.
,
Kožulović
,
D.
, and
Friedrichs
,
J.
,
2014
, “
The Effects of Turbulence Length Scale on Turbulence and Transition Prediction in Turbomachinery Flows
,”
ASME
Paper No. GT2014-27026.
7.
Herbst
,
F.
,
Fiala
,
A.
, and
Seume
,
J. R.
,
2014
, “
Modeling Vortex Generating Jet-Induced Transition in Low-Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
7
), p.
071005
.
8.
Drechsel
,
B.
,
Müller
,
C.
,
Herbst
,
F.
, and
Seume
,
J.
,
2015
, “
Influence of Turbulent Flow Characteristics and Coherent Vortices on the Pressure Recovery of Annular Diffusers—Part B: Scale-Resolving Simulations
,”
ASME
Paper No. GT2015-42477.
9.
Ludewig
,
T.
,
Mack
,
M.
,
Niehuis
,
R.
, and
Franke
,
M.
,
2011
, “
Optimization of the Blowing Ratio for a Low Pressure Turbine Cascade With Active Flow Control
,” 9th European Turbomachinery Conference (
ETC
), Istanbul, Turkey, Mar. 21–25, Paper No. 131.
10.
Scillitoe
,
A.
,
Tucker
,
P.
, and
Adami
,
P.
,
2015
, “
Evaluation of RANS and ZDES Methods for the Prediction of Three-Dimensional Separation in Axial Flow Compressors
,”
ASME
Paper No. GT2015-43975.
11.
Sandberg
,
R.
,
Pichler
,
R.
,
Chen
,
L.
,
Johnstone
,
R.
, and
Michelassi
,
V.
,
2014
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME
Paper No. GT2014-25685.
12.
Breuer
,
M.
,
2002
,
Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern
,
Habilitationsschrift, Universität Erlangen
,
Erlangen, Germany
.
13.
Witherden
,
F.
,
Farrington
,
A.
, and
Vincent
,
P.
,
2014
, “
PyFR: An Open Source Framework for Solving Advection-Diffusion Type Problems on Streaming Architectures Using Flux Reconstruction Approach
,”
Comput. Phys. Commun.
,
185
(
11
), pp.
3028
3040
.
14.
OpenCFD (ESI Group)
,
2015
, “
OpenFOAM: The Open Source CFD Toolbox
,” OpenCFD Ltd., Berkshire, UK, accessed Feb. 2, 2017, http://www.openfoam.com/
15.
Vuorinen
,
V.
,
Larmi
,
M.
,
Schlatter
,
P.
, and
Boersma
,
B.
,
2012
, “
A Low-Dissipative, Scale-Selective Discretization Scheme for Navier-Stokes Equations
,”
Comput. Fluids
,
70
, pp.
195
205
.
16.
Vuorinen
,
V.
,
Keskinen
,
J.-P.
,
Duwig
,
C.
, and
Boersma
,
B.
,
2014
, “
On the Implementation of Low-Dissipative Runge-Kutte Projection Methods for Time Dependent Flows Using OpenFOAM
,”
Comput. Fluids
,
93
, pp.
153
163
.
17.
Hillewaert
,
K.
,
Wiart
,
C.
,
Verheylewegen
,
G.
, and
Arts
,
T.
,
2014
, “
Assessment of a High-Order Discontinuous Galerkin Method for the Direct Numerical Simulation of Transition at Low-Reynolds Number in the T106C High-Lift Low Pressure Turbine Cascade
,”
ASME
Paper No. GT2014-26739.
18.
Koschichow
,
D.
,
Fröhlich
,
J.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
DNS of the Flow Near Endwall in a Linear Low Pressure Turbine Cascade With Periodically Passing Wakes
,”
ASME
Paper No. GT2014-25071.
19.
Breuer
,
M.
,
Peller
,
N.
,
Rapp
,
C.
, and
Manhart
,
M.
,
2009
, “
Flow Over Periodic Hills: Numerical and Experimental Study in a Wide Range of Reynolds Numbers
,”
Comput. Fluids
,
38
(
2
), pp.
433
457
.
20.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
, and
Sandberg
,
R.
,
2014
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME
Paper No. GT2014-25689.
21.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2015
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME
Paper No. GT2015-43429.
22.
Wheeler
,
A.
,
Sandberg
,
R.
,
Sandham
,
N.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2015
, “
Direct Numerical Simulation of a High Pressure Turbine Vane
,”
ASME
Paper No. GT2015-43133.
23.
Entlesberger
,
R.-G.
,
Martinstetter
,
M.
, and
Staudacher
,
W.
,
2005
, “
Untersuchungen am Turbinengitter T161 zur Bestimmung der Profildruckverteilung und der Gittercharakteristik
,” Institutsbericht LRT-WE12-05/12, Universität der Bundeswehr München, Neubiberg, Germany.
24.
Franke
,
M.
,
Kügeler
,
E.
, and
Nürnberger
,
D.
,
2005
, “
Das DLR-Verfahren TRACE: Moderne Simulationstechniken für Turbomaschinenströmungen
,” DGLR-Jahrbuch, Deutscher Luft- und Raumfahrtkongress, Friedrichshafen, Germany, Sept. 26–29.
25.
Kügeler
,
E.
,
Nürnberger
,
D.
,
Weber
,
E.
, and
Engel
,
K.
,
2008
, “
Influence of Blade Fillets on the Performance of a 15 Stage Gas Turbine Compressor
,”
ASME
Paper No. GT2008-50748.
26.
Marciniak
,
V.
,
Kügler
,
E.
, and
Franke
,
M.
,
2010
, “
Predicting Transition on Low-Pressure Turbine Profiles
,”
V European Conference on Computational Fluid Dynamics
(), Lisbon, Portugal, June 14–17.
27.
Fiala
,
A.
, and
Kügeler
,
E.
,
2011
, “
Roughness Modeling For Turbomachinery
,”
ASME
Paper No. GT2011-45424.
28.
Marciniak
,
V.
,
Weber
,
A.
, and
Kügler
,
E.
,
2014
, “
Modelling Transition for the Design of Modern Axial Turbomachines
,”
6th European Conference on Computational Fluid Dynamics
(
ECFD
), Barcelona, Spain, July 20–25.
29.
Müller
,
C.
, and
Herbst
,
F.
,
2014
, “
Modelling of Crossflow-Induced Transition Based on Local Variables
,”
6th European Conference on Computational Fluid Dynamics
(
ECFD
), Barcelona, Spain, July 20–25.
30.
Müller
,
C.
,
Herbst
,
F.
,
Fiala
,
A.
,
Zscherp
,
C.
,
Kügeler
,
E.
, and
Seume
,
J.
,
2015
, “
Parameter Study for an Improved Prediction of Wake-Induced Transition in Low-Pressure Turbines
,”
11th International Gas Turbine Congress (IGTC)
, Tokyo, Nov. 15–20, Paper No. IGTC2015-0043.
31.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Symposium on Turbulent Shear Flows
, Kyoto, Japan, Aug. 16–18, Vol.
1
, pp.
10.4.1
10.4.6
.
32.
Coleman
,
G.
, and
Sandberg
,
R.
,
2010
, “
A Primer on Direct Numerical Simulations of Turbulence—Methods, Procedures and Guidelines
,” .
33.
Pope
,
S.
,
2011
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
34.
Choi
,
H.
, and
Moin
,
P.
,
1994
, “
Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow
,”
J. Comput. Phys.
,
113
(
1
), pp.
1
4
.
35.
Martinstetter
,
M.
,
Niehuis
,
R.
, and
Franke
,
M.
,
2010
, “
Passive Boundary Layer Control on a Highly Loaded Low Pressure Turbine Cascade
,”
ASME
Paper No. GT2010-22739.
36.
Lumley
,
J.
, and
Newman
,
G.
,
1977
, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
,
82
(
8
), pp.
161
178
.
37.
Martinstetter
,
M.
,
2010
, “
Experimentelle Untersuchungen zur Aerodynamik hoch belasteter Niederdruckturbinen-Beschaufelung
,” Ph.D. dissertation, Universität der Bundeswehr München, Neubiberg, Germany.
38.
Monkewitz
,
P. A.
, and
Huerre
,
P.
,
1982
, “
Influence of the Velocity Ratio on the Spatial Instability of Mixing Layers
,”
Phys. Fluids
,
27
(
7
), pp.
1137
1143
.
39.
Yang
,
Z.
, and
Voke
,
P. R.
,
2001
, “
Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
.
40.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers: The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.
41.
Menter
,
F.
,
Langtry
,
R.
,
Likki
,
S. R.
,
Suzen
,
Y.
,
Huang
,
P.
, and
Völker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables—Part 1: Model Formulation
,”
ASME J. Turbomach
,
128
(3), pp. 413–422.
42.
Langtry
,
R. B.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes
,”
Ph.D. dissertation
, Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium, Universität Stuttgart, Stuttgart, Germany.
43.
Menter
,
F.
,
Smirnov
,
P.
,
Liu
,
T.
, and
Avancha
,
R.
,
2015
, “
A One-Equation Local Correlation-Based Transition Model
,”
Flow Turbul. Combust.
,
95
(
4
), pp.
583
619
.
You do not currently have access to this content.