At the large scale turbine rig (LSTR) at Technische Universität Darmstadt, Darmstadt, Germany, the aerothermal interaction of combustor exit flow conditions on the subsequent turbine stage is examined. The rig resembles a high pressure turbine and is scaled to low Mach numbers. A baseline configuration with an axial inflow and a swirling inflow representative for a lean combustor is modeled by swirl generators, whose clocking position toward the nozzle guide vane (NGV) leading edge can be varied. A staggered double-row of cylindrical film cooling holes on the endwall is examined. The effect of swirling inflow on heat transfer and film cooling effectiveness is studied, while the coolant mass flux rate is varied. Nusselt numbers are calculated using infrared thermography and the auxiliary wall method. Boundary layer, turbulence, and five-hole probe measurements as well as numerical simulations complement the examination. The results for swirling inflow show a decrease of film cooling effectiveness of up to 35% and an increase of Nusselt numbers of 10–20% in comparison to the baseline case for low coolant mass flux rates. For higher coolant injection, the heat transfer is on a similar level as the baseline. The differences vary depending on the clocking position. The turbulence intensity is increased to 30% for swirling inflow.
Skip Nav Destination
Article navigation
August 2017
Research-Article
Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig
Holger Werschnik,
Holger Werschnik
Mem. ASME
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: werschnik@glr.tu-darmstadt.de
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: werschnik@glr.tu-darmstadt.de
Search for other works by this author on:
Jonathan Hilgert,
Jonathan Hilgert
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: hilgert@glr.tu-darmstadt.de
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: hilgert@glr.tu-darmstadt.de
Search for other works by this author on:
Manuel Wilhelm,
Manuel Wilhelm
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: wilhelm@glr.tu-darmstadt.de
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: wilhelm@glr.tu-darmstadt.de
Search for other works by this author on:
Martin Bruschewski,
Martin Bruschewski
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: martin.bruschewski@uni-rostock.de
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: martin.bruschewski@uni-rostock.de
Search for other works by this author on:
Heinz-Peter Schiffer
Heinz-Peter Schiffer
Professor
Mem. ASME
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: schiffer@glr.tu-darmstadt.de
Mem. ASME
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: schiffer@glr.tu-darmstadt.de
Search for other works by this author on:
Holger Werschnik
Mem. ASME
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: werschnik@glr.tu-darmstadt.de
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: werschnik@glr.tu-darmstadt.de
Jonathan Hilgert
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: hilgert@glr.tu-darmstadt.de
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: hilgert@glr.tu-darmstadt.de
Manuel Wilhelm
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: wilhelm@glr.tu-darmstadt.de
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: wilhelm@glr.tu-darmstadt.de
Martin Bruschewski
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: martin.bruschewski@uni-rostock.de
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: martin.bruschewski@uni-rostock.de
Heinz-Peter Schiffer
Professor
Mem. ASME
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: schiffer@glr.tu-darmstadt.de
Mem. ASME
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: schiffer@glr.tu-darmstadt.de
1Corresponding author.
2Present Address: Universität Rostock, Institute of Fluid Mechanics, Albert-Einstein-Straße 2, Rostock 18059, Germany.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received July 12, 2016; final manuscript received January 10, 2017; published online March 28, 2017. Editor: Kenneth Hall.
J. Turbomach. Aug 2017, 139(8): 081007 (12 pages)
Published Online: March 28, 2017
Article history
Received:
July 12, 2016
Revised:
January 10, 2017
Citation
Werschnik, H., Hilgert, J., Wilhelm, M., Bruschewski, M., and Schiffer, H. (March 28, 2017). "Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig." ASME. J. Turbomach. August 2017; 139(8): 081007. https://doi.org/10.1115/1.4035832
Download citation file:
Get Email Alerts
Related Articles
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
J. Turbomach (April,2017)
Clocking Effects of Inlet Nonuniformities in a Fully Cooled High-Pressure Vane: A Conjugate Heat Transfer Analysis
J. Turbomach (February,2016)
Related Proceedings Papers
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential