The degree of complexity in internal cooling designs is tied to the capabilities of the manufacturing process. Additive manufacturing (AM) grants designers increased freedom while offering adequate reproducibility of microsized, unconventional features that can be used to cool the skin of gas turbine components. One such desirable feature can be sourced from nature; a common characteristic of natural transport systems is a network of communicating channels. In an effort to create an engineered design that utilizes the benefits of those natural systems, the current study presents wavy microchannels that were connected using branches. Two different wavelength baseline configurations were designed; then each was numerically optimized using a commercial adjoint-based method. Three objective functions were posed to (1) minimize pressure loss, (2) maximize heat transfer, and (3) maximize the ratio of heat transfer to pressure loss. All baseline and optimized microchannels were manufactured using laser powder bed fusion (L-PBF) for experimental investigation; pressure loss and heat transfer data were collected over a range of Reynolds numbers. The AM process reproduced the desired optimized geometries faithfully. Surface roughness, however, strongly influenced the experimental results; successful replication of the intended flow and heat transfer performance was tied to the optimized design intent. Even still, certain test coupons yielded performances that correlated well with the simulation results.

References

1.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2017
, “
Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels
,”
ASME J. Turbomach.
,
139
(
1
), p.
011007
.
2.
Ansys
,
2015
, “
Ansys Fluent
,” Ansys Inc., Canonsburg, PA.
3.
Singh
,
P. K.
,
Tan
,
S. H. F.
,
Teo
,
C. J.
, and
Lee
,
P. S.
,
2013
, “
Flow and Heat Transfer in Branched Wavy Microchannels
,”
ASME
Paper No. MNHMT2013-22058.
4.
Guzmán
,
A. M.
,
Cárdenas
,
M. J.
,
Urzúa
,
F. A.
, and
Araya
,
P. E.
,
2009
, “
Heat Transfer Enhancement by Flow Bifurcations in Asymmetric Wavy Wall Channels
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3778
3789
.
5.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2760
2772
.
6.
Wang
,
G.
, and
Vanka
,
S. P.
,
1995
, “
Convective Heat Transfer in Periodic Wavy Passages
,”
Int. J. Heat Mass Transfer
,
38
(
17
), pp.
3219
3230
.
7.
Pham
,
M. V.
,
Plourde
,
F.
, and
Doan
,
S. K.
,
2008
, “
Turbulent Heat and Mass Transfer in Sinusoidal Wavy Channels
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1240
1257
.
8.
Herman
,
C. V.
,
Mayinger
,
F.
, and
Sekulic
,
D. P.
,
1991
, “
Experimental Verification of Oscillatory Phenomena in Heat Transfer in a Communicating Channels Geometry
,”
Second World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
,
Dubrovnik, Yugoslavia
,
June 23–28
, pp.
904
911
.
9.
Barrot
,
C.
, and
Colin
,
S.
,
2012
, “
Design of Tree-Shaped Microchannel Networks Submitted to Simultaneous Pressure Driven and Electro-Ostmotic Flows
,”
ASME
Paper No. ICNMM2012-73104.
10.
Guzman
,
A. M.
,
Beiza
,
M. P.
,
Diaz
,
A. J.
,
Fischer
,
P. F.
, and
Ramos
,
J. C.
,
2013
, “
Flow and Heat Transfer Characteristics in Micro and Mini Communicating Pressure Driven Channel Flows by Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
568
577
.
11.
Sekulic
,
D. P.
,
1989
, “
Flow Through Communicating Channels Compact Heat Transfer Geometry
,”
Int. Commun. Heat Mass Transfer
,
16
(
5
), pp.
667
679
.
12.
Peng
,
Y.
,
Liu
,
W.
,
Chen
,
W.
, and
Wang
,
N.
,
2014
, “
A Conceptual Structure for Heat Transfer Imitating the Transporting Principle of Plant Leaf
,”
Int. J. Heat Mass Transfer
,
71
, pp.
79
90
.
13.
Weaver
,
A. M.
,
Liu
,
J.
, and
Shih
,
T. I.
,
2015
, “
A Weave Design for Trailing-Edge Cooling
,”
AIAA
Paper No. AIAA-2015-1446.
14.
Kirsch
,
K. L. K. L.
, and
Thole
,
K. A. K. A.
,
2017
, “
Experimental Investigation of Numerically Optimized Wavy Microchannels Created Through Additive Manufacturing
,”
ASME J. Turbomach.
,
140
(
2
), p.
021002
.
15.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des
,
137
(
11
), p. 111403.
16.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Rao
,
V. V.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2017
, “
Air-Side Heat Transfer Enhancement Utilizing Design Optimization and an Additive Manufacturing Technique
,”
ASME J. Heat Transfer
,
139
(
3
), p.
031901
.
17.
Pietropaoli
,
M.
,
Ahlfeld
,
R.
,
Montomoli
,
F.
,
Caini
,
A.
, and
D'Ercole
,
M.
,
2017
, “
Design for Additive Manufacturing: Internal Channel Optimization
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
102101
.
18.
Willeke
,
S.
, and
Verstraete
,
T.
,
2015
, “
Adjoint Optimization of an Internal Cooling Channel U-Bend
,”
ASME
Paper No. GT2015-43423.
19.
Abdoli
,
A.
, and
Dulikravich
,
G. S.
,
2014
, “
Multi-Objective Design Optimization of Branching, Multifloor, Counterflow Microheat Exchangers
,”
ASME J. Heat Transfer
,
136
(
10
), p.
101801
.
20.
Pucci
,
E.
,
Cerutti
,
M.
,
Peano
,
G.
,
Facchini
,
B.
, and
Andreini
,
A.
,
2017
, “
Cooling System Optimization of Combustor Liners
,”
ASME
Paper No. GT2017-64758.
21.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.
22.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
23.
Bacchewar
,
P. B.
,
Singhal
,
S. K.
, and
Pandey
,
P. M.
,
2007
, “
Statistical Modelling and Optimization of Surface Roughness in the Selective Laser Sintering Process
,”
Proc. Inst. Mech. Eng., Part B
,
221
(
1
), pp.
35
52
.
24.
Pakkanen
,
J.
,
Calignano
,
F.
,
Trevisan
,
F.
,
Lorusso
,
M.
,
Ambrosio
,
E. P.
,
Manfredi
,
D.
, and
Fino
,
P.
,
2016
, “
Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys
,”
Metall. Mater. Trans. A
,
47
(
8
), p.
3837
.
25.
Delgado
,
J.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2012
, “
Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM With Iron-Based Materials
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5–8
), pp.
601
610
.
26.
Kleszczynski
,
S.
,
Ladewig
,
A.
,
Friedberger
,
K.
,
Jacobsmühlen
,
J. Z.
,
Merhof
,
D.
, and
Witt
,
G.
,
2015
, “
Position Dependency of Surface Roughness in Parts From Laser Beam Melting Systems
,” 26th Internation Solid Free Form Fabrication (
SFF
) Symposium, Austin, TX, Aug. 10–12, pp.
360
370
.
27.
Anwar
,
A.
,
Bin
., and
Pham
,
Q. C.
,
2017
, “
Selective Laser Melting of AlSi10 Mg: Effects of Scan Direction, Part Placement and Inert Gas Flow Velocity on Tensile Strength
,”
J. Mater. Process. Technol.
,
240
, pp.
388
396
.
28.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
29.
Khaing
,
M. W.
,
Fuh
,
J. Y. H.
, and
Lu
,
L.
,
2001
, “
Direct Metal Laser Sintering for Rapid Tooling: Processing and Characterisation of EOS Parts
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
269
272
.
30.
Wong
,
M.
,
Owen
,
I.
,
Sutcliffe
,
C. J.
, and
Puri
,
A.
,
2009
, “
Convective Heat Transfer and Pressure Losses Across Novel Heat Sinks Fabricated by Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
281
288
.
31.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transfer
,
75
, pp.
58
74
.
32.
Norris
,
R. J.
,
1971
,
Some Simple Approximate Heat Transfer Correlations for Turbulent Flow in Ducts With Surface Roughness
,
American Society of Mechanical Engineers
,
New York
.
33.
Ning
,
Y.
,
Wong
,
Y. S.
,
Fuh
,
J. Y. H.
, and
Loh
,
H. T.
,
2006
, “
An Approach to Minimize Build Errors in Direct Metal Laser Sintering
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
1
), pp.
73
80
.
34.
Maurer
,
M.
,
Sierra
,
P.
, and
Meng
,
P.
,
2016
, “
Reheat Burner Front Panel Produced by Additive Manufacturing Challenges, Strategies and Engine Validation
,”
ASME
Paper No. GT2016-57458.
35.
Ealy
,
B.
,
Calderon
,
L.
,
Wang
,
W.
,
Kapat
,
J.
,
Mingareev
,
I.
,
Richardson
,
M.
, and
Valentin
,
R.
,
2016
, “
Characterization of LAM-Fabricated Porous Superalloys for Turbine Components
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
102102
.
36.
Schurb
,
J.
,
Hoebel
,
M.
,
Haehnle
,
H.
,
Kissel
,
H.
,
Bogdanic
,
L.
, and
Etter
,
T.
,
2016
, “
Additive Manufacturing of Hot Gas Path Parts and Engine Validate in Heavy Duty GT
,”
ASME
Paper No. GT2016-57262.
37.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
.
38.
EOS, 2017, “
EOSINT M 280 System Data Sheet
,”
EOS GmbH
, Munich, Germany.
39.
EOS
,
2014
, “
EOS Nickel Alloy IN718 for EOSINT M 270 Systems
,” EOS GmbH, Munich, Germany, T4-Material Data Sheet M4, p.
6
.
40.
Weaver
,
S. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2011
, “
Microchannels With Manufacturing Roughness Levels
,”
ASME J. Turbomach.
,
133
(
4
), p.
41014
.
41.
AliCat
,
2014
, “
Mass Flow Controller—Operating Manual
,” Alicat Scientific, Inc., Tucson, AZ.
42.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing the Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
43.
Colebrook
,
C. F.
, and
White
,
C. M.
,
1937
, “
Experiments With Fluid Friction in Roughened Pipes
,”
Proc. R. Soc. London A
,
161
(
906
), pp.
367
381
.
44.
Gnielinski
,
V.
,
1975
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
You do not currently have access to this content.