Turbine vane endwalls are highly susceptible to intensive heat load due to their large exposed area and complex flow field especially for the first stage of the vane. Therefore, a suitable film cooling design that properly distributes the given amount of coolant is critical to keep the vane endwall from failure at the same time to maintain a good balance between manufacturing cost, performance, and durability. This work is focused on film cooling effectiveness evaluation on full-scale heavy-duty turbine vane endwall and the performance comparison with different film cooling pattern designs in the literature. The area of interest (AOI) of this study is on the inner endwall (hub) of turbine vane. Tests were performed in a three-vane annular sector cascade under the mainstream Reynolds number 350,000; the related inlet Mach number is 0.09 and the freestream turbulence intensity is 12%. Two variables, coolant-to-mainstream mass flow ratios (MFR = 2–4%) and density ratios (DR = 1.0, 1.5), are investigated. The conduction-error free pressure-sensitive paint (PSP) technique is utilized to evaluate the local flow behavior as well as the film cooling performance. The presented results are expected to provide the gas turbine engine designer a direct comparison between two film-hole configurations on a full-scale vane endwall under the same amount of coolant usage.

References

1.
Han
,
J.-C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
2.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
.
3.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp.
786
793
.
4.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
.
5.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
6.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.
7.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
.
8.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
9.
Chen
,
A. F.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2015
, “
Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique
,”
J. Thermophys. Heat Transfer
,
29
(
4
), pp.
775
784
.
10.
Vinton
,
K. R.
,
Watson
,
T. B.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2016
, “
Combined Effects of Freestream Pressure Gradient and Density Ratio on the Film Cooling Effectiveness of Round and Shaped Holes on a Flat Plate
,”
ASME
Paper No. GT2016-56210.
11.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
12.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2015
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
Front. Heat Mass Transfer
,
6
(8), p.
013008
.
13.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
End-Wall Film Cooling Through Fan-Shaped Holes With Different Area Ratios
,”
ASME J. Turbomach.
,
129
(
2
), pp.
212
220
.
14.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
.
15.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2005
, “
Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
128
(
1
), pp.
62
70
.
16.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2006
, “
The Effects of Varying the Combustor-Turbine Gap
,”
ASME J. Turbomach.
,
129
(
4
), pp.
756
764
.
17.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2012
, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage, and Assembly Features
,”
ASME J. Turbomach.
,
135
(
1
), p.
011002
.
18.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W. F.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
,
2014
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME
Paper No. GT2014-26476.
19.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2016
, “
Full-Scale Turbine Vane Endwall Film-Cooling Effectiveness Distribution Using Pressure-Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
5
), p.
051002
.
20.
Chowdhury
,
N.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2016
, “
Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration
,”
ASME J. Turbomach.
,
139
(
6
), p.
061003
.
21.
Chen
,
A. F.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2016
, “
Turbine Blade Platform Film Cooling With Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
139
(
3
), p.
031012
.
22.
Baines
,
W. D.
, and
Peterson
,
E. G.
,
1951
, “
An Investigation of Flow Through Screens
,”
Trans. ASME
,
73
, pp.
467
480
.
23.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
, p.
013001
.
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
25.
Ranson
,
W.
,
Thole
,
K. A.
, and
Cunha
,
F.
,
2005
, “
Adiabatic Effectiveness Measurements and Predictions of Leakage Flows Along a Blade Endwall
,”
ASME J. Turbomach.
,
127
(
3
), pp.
609
618
.
26.
Anderson
,
J. B.
,
Wilkes
,
E. K.
,
McClintic
,
J. W.
, and
Bogard
,
D. G.
,
2016
, “
Effects of Freestream Mach Number, Reynolds Number, and Boundary Layer Thickness on Film Cooling Effectiveness of Shaped Holes
,”
ASME
Paper No. GT2016-56152.
You do not currently have access to this content.