In this work, the flows inside a high-pressure turbine (HPT) vane and stage are studied with a delayed detached eddy simulation (DDES) code. The fundamental nozzle/blade interaction is investigated with special attention paid to the development and transportation of the vane wake vortices. There are two motivations for this work. First, the extreme HPT operation conditions, including both transonic Mach numbers and high Reynolds numbers, impose a great challenge to modern computational fluid dynamics (CFD), especially for scale-resolved simulation methods. An accurate and efficient high-fidelity CFD solver is very important for a thorough understanding of the flow physics and the design of more efficient HPT. Second, the periodic wake vortex shedding is an important origin of turbine losses and unsteadiness. The wake and vortices not only cause losses themselves, but also interact with the shock wave (under transonic working condition), pressure waves, and have a strong impact on the downstream blade surface (affecting boundary layer transition and heat transfer). Based on one of our previous DDES simulations of a HPT vane, this work further investigates the development and length characteristics of the wake vortices, provides explanations for the length characteristics, and reveals the transportation of the wake vortices in the downstream rotor passages along with its impact on the downstream aero-thermal performance.

References

1.
Brookfield
,
J.
,
Waitz
,
I.
, and
Sell
,
J.
,
1997
, “
Wake Decay: Effect of Freestream Swirl
,”
ASME
Paper No. 97-GT-495.
2.
Sieverding
,
C.
, and
Heinemann
,
H.
,
1989
, “
The Influence of Boundary Layer State on Vortex Shedding From Flat Plates and Turbine Cascades
,”
ASME
Paper No. 89-GT-296.
3.
Michelassi
,
V.
,
Rodi
,
W.
, and
Giess
,
P.-A.
,
1997
, “
Experimental and Numerical Investigation of Boundary-Layer and Wake Development in a Transonic Turbine Cascade
,”
ASME
Paper No. 97-GT-483.
4.
Cicatelli
,
G.
, and
Sieverding
,
C.
,
1997
, “
The Effect of Vortex Shedding on the Unsteady Pressure Distribution around the Trailing Edge of a Turbine Blade
,”
ASME J. Turbomach.
,
119
(
4
), pp.
810
819
.
5.
Sieverding
,
C. H.
,
Ottolia
,
D.
,
Bagnera
,
C.
,
Cimadoro
,
A.
, and
Desse
,
J.-M.
,
2003
, “
Unsteady Turbine Blade Wake Characteristics
,”
ASME
Paper No. GT2003-38934.
6.
Hodson
,
H.
,
1985
, “
An Inviscid Blade-to-Blade Prediction of a Wake-Generated Unsteady Flow
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
337
343
.
7.
Hodson
,
H.
,
1985
, “
Measurements of Wake-Generated Unsteadiness in the Rotor Passages of Axial Flow Turbines
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
467
476
.
8.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power
,
4
(
4
), pp.
356
362
.
9.
Rai
,
M. M.
,
1987
, “
Navier-Stokes Simulations of Rotor/Stator Interaction Using Patched and Overlaid Grids
,”
J. Propul. Power
,
3
(
5
), pp.
387
396
.
10.
Korakianitis
,
T.
,
1993
, “
On the Propagation of Viscous Wakes and Potential Flow in Axial-Turbine Cascades
,”
ASME J. Turbomach.
,
115
(
1
), pp.
118
127
.
11.
Dawes
,
W.
,
1993
, “
Simulating Unsteady Turbomachinery Flows on Unstructured Meshes Which Adapt Both in Time and Space
,”
ASME
Paper No. 93-GT-104.
12.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME
Paper No. 93-GT-435.
13.
Chaluvadi
,
V. P. S.
,
Kalfas
,
A. I.
,
Banieghbal
,
M. R.
,
Hodson
,
H. P.
, and
Denton
,
J. D.
,
2001
, “
Blade-Row Interaction in a High-Pressure Turbine
,”
J. Propul. Power
,
17
(
4
), pp.
892
901
.
14.
Meyer
,
R.
,
1958
, “
The Effect of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines
,”
ASME J. Basic Eng.
,
80
pp.
1544
1552
.
15.
Lopatitskii
,
A.
,
1969
, “
Energy Losses in the Transient State of an Incident Flow on the Moving Blades of Turbine Stages
,”
Energomashinostr
, 42(15), p.
42
.
16.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
,
1997
, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME
Paper No. 97-GT-535.
17.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A.
,
1970
, “
Intra-Stator Transport of Rotor Wakes and Its Effect on Compressor Performance
,”
ASME J. Eng. Power
,
92
(
4
), pp.
359
368
.
18.
Tweedt
,
D. L.
,
Hathawayt
,
M. D.
, and
Okiishi
,
T. H.
,
1985
, “
Multistage Compressor Stator/Rotor Interaction
,”
J. Propul. Power
,
1
(
6
), pp.
449
455
.
19.
Adachi
,
T.
, and
Murakami
,
Y.
,
1979
, “
Three-Dimensional Velocity Distribution Between Stator Blades and Unsteady Force on a Blade Due to Passing Wakes
,”
Bull. JSME
,
22
(
170
), pp.
1074
1082
.
20.
Weyer
,
H.
, and
Dunker
,
R.
,
1983
, “
Flow Measurements in Stator Rows behind a Transonic Axial Compressor
,” Viscous Effects in Turbomachines, Copenhagen, AGARD CP-351.
21.
Hodson
,
H.
, and
Dawes
,
W.
,
1998
, “
On the Interpretation of Measured Profile Losses in Unsteady Wake-Turbine Blade Interaction Studies
,”
ASME J. Turbomach.
,
120
(
2
), pp.
276
284
.
22.
Smith
,
L.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
688
690
.
23.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
,
2002
, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
(
2
), pp.
275
284
.
24.
Rose
,
M. G.
, and
Harvey
,
N. W.
,
2000
, “
Turbomachinery Wakes: Differential Work and Mixing Losses
,”
ASME J. Turbomach.
,
122
(
1
), pp.
68
77
.
25.
Praisner
,
T.
,
Clark
,
J.
,
Nash
,
T.
,
Rice
,
M.
, and
Grover
,
E.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery
,”
ASME
Paper No. GT2006-90666.
26.
Marx
,
M.
,
Lipfert
,
M.
,
Rose
,
M. G.
,
Staudacher
,
S.
, and
Engel
,
K.
,
2015
, “
Unsteady Work and Wake Recovery Due to Pressure Wave Interaction in a LP Turbine
,”
ASME
Paper No. GT2015-43276.
27.
Luo
,
J.
, and
Lakshminarayana
,
B.
,
1997
, “
Three-Dimensional Navier-Stokes Computation of Turbine Nozzle Flow With Advanced Turbulence Models
,”
ASME J. Turbomach.
,
119
(
3
), pp.
516
530
.
28.
Gehrer
,
A.
,
Lang
,
H.
,
Mayrhofer
,
N.
, and
Woisetschläger
,
J.
,
2000
, “
Numerical and Experimental Investigation of Trailing Edge Vortex Shedding Downstream of a Linear Turbine Cascade
,”
ASME
Paper No. 2000-GT-0434.
29.
Wheeler
,
A. P.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
30.
Bhaskaran
,
B.
,
2010
, “
Large Eddy Simulation of High Pressure Turbine Cascade
,”
Ph.D. dissertation
, Stanford University, Stanford, CA. https://searchworks.stanford.edu/view/8652373
31.
Morata
,
E. C.
,
Gourdain
,
N.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2012
, “
Effects of Free-Stream Turbulence on High Pressure Turbine Blade Heat Transfer Predicted by Structured and Unstructured LES
,”
Int. J. Heat Mass Transfer
,
55
(
21
), pp.
5754
5768
.
32.
Wang
,
G.
,
Papadogiannis
,
D.
,
Duchaine
,
F.
,
Gourdain
,
N.
, and
Gicquel
,
L. Y.
,
2013
, “
Towards Massively Parallel Large Eddy Simulation of Turbine Stages
,”
ASME
Paper No. GT2013-94852.
33.
Papadogiannis
,
D.
,
Duchaine
,
F.
,
Sicot
,
F.
,
Gicquel
,
L.
,
Wang
,
G.
, and
Moreau
,
S.
,
2014
, “
Large Eddy Simulation of a High Pressure Turbine Stage: Effects of Sub-Grid Scale Modeling and Mesh Resolution
,”
ASME
Paper No. GT2014-25876.
34.
Kopriva
,
J. E.
,
Laskowski
,
G. M.
, and
Sheikhi
,
M. R. H.
,
2014
, “
Computational Assessment of Inlet Turbulence on Boundary Layer Development and Momentum/Thermal Wakes for High Pressure Turbine Nozzle and Blade
,”
ASME
Paper No. IMECE2014-38620.
35.
Laskowski
,
G. M.
,
Kopriva
,
J.
,
Michelassi
,
V.
,
Shankaran
,
S.
,
Paliath
,
U.
,
Bhaskaran
,
R.
,
Wang
,
Q.
,
Talnikar
,
C.
,
Wang
,
Z.
, and
Jia
,
F.
,
2016
, “
Future Directions of High-Fidelity CFD for Aero-Thermal Turbomachinery Research, Analysis and Design
,”
AIAA
Paper No. 2016-3322.
36.
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2016
, “
Delayed Detached-Eddy Simulations of a High Pressure Turbine Vane
,”
ASME
Paper No. GT2016-56911.
37.
Arts
,
T.
,
De Rouvroit
,
M. L.
, and
Rutherford
,
A.
,
1990
, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,” von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium, Technical Report No.
174
.https://repository.tudelft.nl/view/aereports/uuid:1bdc512b-a625-4607-a339-3cc9b371215e/
38.
Dénos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
,
V.
, and
Martelli
,
F.
,
2000
, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,”
ASME
Paper No. 2000-GT-0435.
39.
Erhard
,
J.
,
2000
, “
Design, Construction and Commissioning of a Transonic Test-Turbine Facility
,”
Ph.D. dissertation
, Graz University of Technology, Graz, Austria. https://www.tugraz.at/fileadmin/user_upload/Institute/ITTM/capabilities/testRigs/TTTF_gehrer_diss.pdf
40.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M.
,
Squires
,
K.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
41.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
AIAA
Paper No. 2001-0879.
42.
Liu
,
J.
,
Xiao
,
Z.
, and
Fu
,
S.
,
2011
, “
Unsteady Flow Around Two Tandem Cylinders Using Advanced Turbulence Modeling Method
,”
Computational Fluid Dynamics 2010
,
Springer
, Berlin, pp.
879
881
.
43.
Su
,
X.
, and
Yuan
,
X.
,
2015
, “
DDES Simulation of Turbine Blade at High Subsonic Outlet Mach Number
,” 12th International Conference on Fluid Dynamics, Sendai, Japan, Oct. 27–29, Paper No.
GS1-2
. http://www.ifs.tohoku.ac.jp/icfd2015/
44.
Wang
,
Z.-N.
, and
Yuan
,
X.
,
2013
, “
Unsteady Mechanisms of Compressor Corner Separation Over a Range of Incidences Based on Hybrid LES/RANS
,”
ASME
Paper No. GT2013-95300.
45.
Wang
,
H.
,
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2017
, “
Entropy Analysis of the Interaction Between the Corner Separation and Wakes in a Compressor Cascade
,”
Entropy
,
19
(
7
), p.
324
.
46.
Lin
,
D.
,
Yuan
,
X.
, and
Su
,
X.
,
2017
, “
Local Entropy Generation in Compressible Flow Through a High Pressure Turbine With Delayed Detached Eddy Simulation
,”
Entropy
,
19
(
1
), p.
29
.
47.
Léonard
,
T.
,
Gicquel
,
L. Y.
,
Gourdain
,
N.
, and
Duchaine
,
F.
,
2015
, “
Steady/Unsteady Reynolds-Averaged Navier–Stokes and Large Eddy Simulations of a Turbine Blade at High Subsonic Outlet Mach Number
,”
ASME J. Turbomach.
,
137
(
4
), p.
041001
.
48.
Wheeler
,
A. P.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2015
, “
Direct Numerical Simulations of a High Pressure Turbine Vane
,”
ASME
Paper No. GT2015-43133.
49.
Pichler
,
R.
,
Kopriva
,
J.
,
Laskowski
,
G.
,
Michelassi
,
V.
, and
Sandberg
,
R.
,
2016
, “
Highly Resolved LES of a Linear HPT Vane Cascade Using Structured and Unstructured Codes
,”
ASME
Paper No. GT2016-57189.
50.
Su
,
X.
,
2010
, “
Algorithm Developments for Unsteady Turbomachinery Flow Computations
,” Ph.D. dissertation, Tsinghua University, Beijing, China.
51.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
52.
Celik
,
I.
,
Cehreli
,
Z.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.
53.
Deardorff
,
J. W.
,
1980
, “
Stratocumulus-Capped Mixed Layers Derived From a Three-Dimensional Model
,”
Boundary-Layer Meteorol.
,
18
(
4
), pp.
495
527
.
54.
Benard
,
P.
,
Balarac
,
G.
,
Moureau
,
V.
,
Dobrzynski
,
C.
,
Lartigue
,
G.
, and
D'Angelo
,
Y.
,
2016
, “
Mesh Adaptation for Large-Eddy Simulations in Complex Geometries
,”
Int. J. Numer. Methods Fluids
,
81
(
12
), pp.
719
740
.
55.
Cicatelli
,
G.
, and
Sieverding
,
C.
,
1996
, “
A Review of the Research on Unsteady Turbine Blade Wake Characteristics
,”
AGARD CP-571
.https://www.tib.eu/en/search/id/BLCP%3ACN012769842/A-Review-of-the-Research-on-Unsteady-Turbine-Blade/
56.
Herwig
,
H.
, and
Kock
,
F.
,
2007
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.
You do not currently have access to this content.