In modern lean-burn aero-engine combustors, highly swirling flow structures are adopted to control the fuel-air mixing and to provide the correct flame stabilization mechanisms. Aggressive swirl fields and high turbulence intensities are hence expected in the combustor-turbine interface. Moreover, to maximize the engine cycle efficiency, an accurate design of the high-pressure nozzle cooling system must be pursued: in a film-cooled nozzle, the air taken from last compressor stages is ejected through discrete holes drilled on vane surfaces to provide a cold layer between hot gases and turbine components. In this context, the interactions between the swirling combustor outflow and the vane film cooling flows play a major role in the definition of a well-performing cooling scheme, demanding for experimental campaigns at representative flow conditions. An annular three-sector combustor simulator with fully cooled high-pressure vanes has been designed and installed at THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion-cooled liners, and six film-cooled high-pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central airfoil aligned with the central swirler. In this experimental work, adiabatic film effectiveness measurements have been carried out in the central sector vanes, in order to characterize the film-cooling performance under swirling inflow conditions. The pressure-sensitive paint (PSP) technique, based on heat and mass transfer analogy, has been exploited to catch highly detailed 2D distributions. Carbon dioxide has been used as coolant in order to reach a coolant-to-mainstream density ratio of 1.5. Turbulence and five-hole probe measurements at inlet/outlet of the cascade have been carried out as well, in order to highlight the characteristics of the flow field passing through the cascade and to provide precise boundary conditions. Results have shown a relevant effect of the swirling mainflow on the film cooling behavior. Differences have been found between the central airfoil and the adjacent ones, both in terms of leading edge stagnation point position and of pressure and suction side film coverage characteristics.

References

1.
ICAO
,
1999
, “
ICAO Adopts New Aircraft Engine Emissions and Noise Standards,” Council of the International Civil Aviation Organization
,” Montreal, QC, Canada, Document Ref: PIO 02/99,
1999
.
2.
Wilfert
,
G.
,
Sieber
,
J.
,
Rolt
,
A.
,
Baker
,
N.
,
Touyeras
,
A.
, and
Colantuoni
,
S.
,
2007
, “
New Environmental Friendly Aero Engine Core Concepts
,”
18th ISABE Conference
, Beijing, China, Sept. 2–7, Paper No.
ISABE-2007(1120)
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.6911&rep=rep1&type=pdf
3.
Hall
,
B. F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2014
, “
Design of a Non Reacting Combustor Simulator With Swirl and Temperature Distortion With Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081501
.
4.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
, New York, pp.
129
249
.
5.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Ramsey
,
J. W.
,
1968
, “
Film Cooling With Injection Through Holes: Adiabatic Wall Temperatures Downstream of a Circular Hole
,”
ASME J. Eng. Power
,
90
(4), pp.
384
395
.
6.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
7.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(4), pp.
620
627
.
8.
Ito
,
S.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
(3), pp.
476
481
.
9.
Zhang
,
L.
,
Yin
,
J.
, and
Moon
,
H. K.
,
2009
, “
The Effect of Compound Angle on Nozzle Pressure Side Film Cooling
,”
ASME
Paper No. GT2009-59141.
10.
Han
,
J. C.
, and
Rallabandi
,
P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
, p. 013001.
11.
Luque
,
S.
, and
Povey
,
T.
,
2011
, “
A Novel Technique for Assessing Turbine Cooling System Performance
,”
ASME J. Turbomach.
,
133
(
3
), p.
031013
.
12.
Liu
,
K.
,
Narzary
,
D. P.
,
Han
,
J. C.
,
Mirzamoghadam
,
A. V.
, and
Riahi
,
A.
,
2011
, “
Influence of Shock Wave on Turbine Vane Suction Side Film Cooling With Compound-Angle Shaped Holes
,”
ASME
Paper No. GT2011-45927.
13.
Andrei
,
L.
,
Facchini
,
B.
,
Caciolli
,
G.
,
Picchi
,
A.
,
Tarchi
,
L.
,
D'Ercole
,
M.
,
Innocenti
,
L.
, and
Russo
,
A.
,
2014
, “
Performance Improvement of a Heavy Duty GT: Adiabatic Effectiveness Measurements on First Stage Vanes in Representative Engine Conditions
,”
ASME
Paper No. GT2014-26894.
14.
Barringer
,
M. D.
,
Thole
,
K. A.
,
Polanka
,
M. D.
,
Clark
,
J. P.
, and
Koch
,
P. J.
,
2009
, “
Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021010
.
15.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine
,”
ASME J. Turbomach.
,
131
(
2
), p.
021008
.
16.
Jenkins
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
.
17.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2010
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.
18.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H. P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propulsion Power
,
2
(3), p. 12.
19.
Werschnik
,
H.
,
Hilgert
,
J.
,
Wilhelm
,
M.
,
Bruschewski
,
M.
, and
Schiffer
,
H. P.
,
2017
, “
Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig
,”
ASME J. Turbomach.
,
139
(
8
), p.
081007
.
20.
Qureshi
,
I.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
Hp Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
21.
Hall
,
B. F.
, and
Povey
,
T.
,
2015
, “
Experimental Study of Non-Reacting Low NOx Combustor Simulator for Scaled Turbine Experiments
,”
AMSE
Paper No. GT2015-43530.
22.
Giller
,
L.
, and
Schiffer
,
H. P.
,
2012
, “
Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine
,”
ASME
Paper No. GT2012-69157.
23.
Schmid
,
G.
,
Krichbaum
,
A.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2014
, “
The Impact of Realistic Inlet Swirl in a 1-1/2 Stage Axial Turbine
,”
ASME
Paper No. GT2014-26716.
24.
Andreini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2014
, “
Experimental Investigation of the Flow Field and the Heat Transfer on a Scaled Cooled Combustor Liner With Realistic Swirling Flow Generated by a Lean-Burn Injection System
,”
ASME J. Turbomach.
,
137
(
3
), p.
031012
.
25.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121503
.
26.
Koupper
,
C.
,
Caciolli
,
G. A.
,
Gicquel
,
L.
,
Duchaine
,
F.
,
Bonneau
,
G.
,
Tarchi
,
L.
, and
Facchini
,
B.
,
2014
, “
Development of an Engine Representative Combustor Simulator Dedicated to Hot Streak Generation
,”
ASME J. Turbomach.
,
136
(
11
), p.
111007
.
27.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J. L.
,
2015
, “
Flowfield and Temperature Profiles of a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42217.
28.
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Tarchi
,
L.
,
2013
, “
Comparison Between PSP and TLC Steady State Techniques for Adiabatic Effectiveness Measurement on a Multiperforated Plate
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
122
133
.
29.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Kobke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
ASME
Paper No. GT2009-60306.
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
31.
Akshoy
,
R. P.
,
Ravi
,
R. U.
, and
Anuj
,
J.
,
2011
, “
A Novel Calibration Algorithm for Five-Hole Pressure Probe
,”
Int. J. Eng., Sci. Technol.
,
3
(2), pp. 89–95.https://www.ajol.info/index.php/ijest/article/view/68136/56226
32.
Treaster
,
A. L.
, and
Yocum
,
A. M.
,
1978
, “
The Calibration and Application of Five-Hole Probes
,” The Pennsylvania State University Institute for Science and Engineering, University Park, PA, pp.
255
266
.
33.
Bacci
,
T.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J. L.
,
2015
, “
Turbulence Field Measurements at the Exit of a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42218.
You do not currently have access to this content.