Abstract

Film-cooling jets behavior in a combustor chamber is deeply affected by swirling flow interactions and unsteadiness; on the other hand, the jets behavior has a direct impact on different phenomena such as cooling capabilities and ignition. For these reasons, an in-depth characterization of the film-cooling flows in the presence of a swirling main flow and demands dedicated time-resolved analyses. The experimental setup consists of a nonreactive single-sector linear combustor simulator installed in an open-loop wind tunnel. It is equipped with a swirler and a multiperforated plate to simulate the effusion cooling system of the liner. The rig is scaled with respect to the engine configuration to increase spatial resolution and to reduce the characteristic frequencies of the unsteady phenomena. Time-resolved particle image velocimetry (TRPIV) was exploited for the investigation testing different values of liner pressure drop. In addition, numerical investigations were carried out to gain a deeper insight of the behavior highlighted by the experiments and to assess the capability of computational fluid dynamics (CFD) in predicting the flow physics. In this work, the stress-blended eddy simulation (SBES) approach implemented in ansys fluent was adopted. Oscillations of the jets and intermittent interactions of the mainstream with the wall of the liner and hence with the film development have been investigated in detail. The results demonstrate how an unsteady analysis of the flow structures that characterize the jets, the turbulent mixing of coolant flows, and the interaction between mainstream and cooling jets is strictly necessary to have a complete knowledge of the behavior of the coolant, which in turn affects combustor operability and life time.

References

1.
Fernandes
,
C. P.
,
Hodges
,
J.
,
Fernandez
,
E.
, and
Kapat J
,
S.
,
2018
,
“Flow Statistics and Visualization of Multi-Row Film Cooling Boundary Layers Emanating From Cylindrical and Diffuser Shaped Holes,” ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Page No. V05CT19A033, Paper No. GT2018-76964
.
2.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas. Turb. Power
,
134
(
12
), p.
121503
. 10.1115/1.4007332
3.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2015
, “
Adiabatic Effectiveness and Flow Field Measurements in a Realisticeffusion Cooled Lean Burn Combustor
,”
ASME J. Eng. Gas. Turb. Pwr.
,
138
(
3
), p.
031506
. 10.1115/1.4031309
4.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
. 10.1017/S0022112094003800
5.
Gustafsson
,
K. M. B.
,
2001
, “
Experimental Studies of Effusion Cooling
,”
Department of Thermo and Fluid Dynamics, Chalmers University of Technology
,
Gteborg, Sweden
.
6.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
. 10.1115/1.2841410
7.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2006
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
,
129
(
3
), pp.
518
526
. 10.1115/1.2720492
8.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2013
, “
Time-Resolved Film-Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
. 10.1115/1.4025574
9.
Abram
,
C.
,
Schreivogel
,
P.
,
Fond
,
B.
,
Straubald
,
M.
,
Pfitzner
,
M.
, and
Beyrau
,
F.
,
2016
, “
Investigation of Film Cooling Flows using Thermographic Particle Image Velocimetry at a 6 kHz Repetition Rate
,”
18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July
.
10.
Straubald
,
M.
,
Schmid
,
K.
,
Hagen
,
M.
, and
Pfitzner
,
M.
,
2017
, “
Experimental and Numerical Investigation of Turbulent Mixing in Film Cooling Applications,” Turbo Expo: Power for Land, Sea, and Air, Paper No. GT2017-64650
.
11.
Acharya
,
S.
,
Tyagi
,
M.
, and
Hoda
,
Asif
,
2001
, “
Flow and Heat Transfer Predictions for Film Cooling
,”
Ann. New York Acad. Sci.
,
934
, pp.
110
125
. 10.1111/j.1749-6632.2001.tb05846.x
12.
Ling
,
J.
,
Ryan
,
K. J.
,
Bodart
,
J.
, and
Eaton
,
J. K.
,
2015
, “
Analysis of Turbulent Scalar Flux Models for a Discrete Hole Film Cooling Flow
,”
ASME J. Turbomach.
,
138
(
1
), p.
011006
. 10.1115/1.4031698
13.
Cocchi
,
L.
,
Picchi
,
A.
,
Mazzei
,
L.
,
Andreini
,
A.
, and
Bellocci
,
L.
,
2017
, “
Effect of Holes Arrangement on Heat Transfer in Impingement/Effusion Cooling Double Wall Schemes
,”
1st Global Power and Propulsion Forum
,
Zurich, Switzerland
,
January
.
14.
Nathan
,
R
,
Zhong
,
R
,
Buzzard
,
W.
,
Sweeney
,
B.
,
Tinker
,
N.
,
Ligrani
,
P.
,
Hollingsworth
,
K.
,
Liberatore
,
F.
,
Patel
,
R.
,
Ho
,
S.
, and
Moon
,
H. K.
,
2017
, “
Effects of Double Wall Cooling Configuration and Conditions on Performance of Full-Coverage Effusion Cooling
,”
ASME J. Turbomachi.
,
139
(
5
), p.
051009
. 10.1115/1.4035277
15.
Kahler
,
C. J.
,
Sammler
,
B.
, and
Kompenhas
,
J.
,
2002
, “
Generation and Control of Tracer Particles for Optical Flow Investigations in Air
,”
Exp. Fluids
,
33
(
6
), pp.
736
742
. 10.1007/s00348-002-0492-x
16.
Westerweel
,
J.
,
1997
, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1379
1392
. 10.1088/0957-0233/8/12/002
17.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
,
1997
,
Particle Image Velocimetry—A Pratical Guide
,
Springer
,
New York
.
18.
Westerweel.
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for Piv Data
,”
Exp. Fluids
,
39
, pp.
1096
1100
. 10.1007/s00348-005-0016-6
19.
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2013
, “
Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements From Cross-Correlation Peak Ratio
,”
Meas. Sci. Technol.
,
24
(
6
), p.
065301
. 10.1088/0957-0233/24/6/065301
20.
Frank
,
T.
, and
Menter
,
F.
,
May 2017
, “
Validation of URANS SST and SBES in ANSYS CFD for the Turbulent Mixing of Two Parallel Planar Water Jets Impinging on a Stationary Pool
,”
ASME, Verification and Validation Symposium
,
Las Vegas, NV
,
May
, p. VVS2017.
21.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Peschiulli
,
A.
,
2017
, “
The Effect of Effusion Holes Inclination Angle on the Adiabatic Film Cooling Effectiveness in a Three-Sector Gas Turbine Combustor Rig With a Realistic Swirling Flow
,”
Int. J. Thermal Sci.
,
121
, pp.
75
88
. 10.1016/j.ijthermalsci.2017.07.003
22.
Schreivogel
,
P.
,
Kross
,
B.
, and
Pfitzner
,
M.
,
2014
, “
Density Ratio Effects on the Flow Field Emanating From Cylindrical Effusion and Trenched Film Cooling Holes
,” Turbo Expo: Power for Land, Sea, and Air, Paper No. GT2014-25143.
23.
Kalghatgi
,
P.
, and
Acharya
,
S.
,
2014
, “
Modal Analysis of Inclined Film Cooling Jet Flow
,”
ASME J. Turbomach.
,
136
(
8
), p.
081007
. 10.1115/1.4026374
You do not currently have access to this content.