Abstract

The successful penetration of supercritical carbon dioxide (sCO2) power systems in the energy market largely depends on the achievable turbomachinery efficiencies. The present study illustrates a systematic framework where both the compressor and the turbine are designed via validated (within ±2% pts against experiments) mean-line tools, and the subsequent impact on cycle performance estimates is quantitatively and qualitatively assessed. A significant effort is devoted to the analysis of centrifugal compressors that operate close to the thermodynamic critical point, where sharp variations in the thermodynamic properties may make the compression process critical. The analysis is performed for different compressor sizes and pressure ratios, showing a comparatively small contribution of the compressor-intake fluid conditions to the machine efficiency, which may achieve competitive values (82–85%) for representative full-scale sizes. Two polynomial correlations for both the turbomachinery efficiencies are devised as a function of proper similarity parameters accounting for machine sizes and loading. Such correlations can be easily embedded in power cycle optimizations, which are usually carried out assuming constant turbomachinery efficiencies, thus ignoring the effects of plant size and cycle operating parameters. Efficiency correlations are finally exploited to perform several optimizations of a representative recompression sCO2 cycle, by varying multiple cycle parameters, namely maximum and minimum temperature, pressure ratio, and net power output. The results highlight that the replacement of the constant-efficiency assumption with the proposed correlations leads to more accurate performance predictions (e.g., cycle efficiency can differ by more than 4% pts), besides demonstrating that an optimal pressure ratio exists in the range 2–5 for all the investigated configurations.

References

1.
Dostal
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
2.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Proceedings of the SolarPACES 2013 International Conference
,
Las Vegas, NV
[Energy Procedia
49
,
1187
1196
].10.1016/j.egypro.2014.03.128
3.
Poerner
,
M.
, and
Rimpel
,
A.
,
2017
, “10—Waste Heat Recovery,”
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
K.
Brun
,
P.
Friedman
, and
R.
Dennis
, eds.,
Woodhead Publishing
,
Cambridge, MA
, pp.
255
267
.
4.
Musgrove
,
G.
, and
Wright
,
S.
,
2017
, “1—Introduction and Background,”
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
K.
Brun
,
P.
Friedman
, and
R.
Dennis
, eds.,
Woodhead Publishing
,
Cambridge, MA
, pp.
1
22
.
5.
Allison
,
T.
,
Moore
,
J.
,
Pelton
,
R.
,
Wilkes
,
J.
, and
Ertas
,
B.
,
2017
, “7—Turbomachinery,”
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
K.
Brun
,
P.
Friedman
, and
R.
Dennis
, eds.,
Woodhead Publishing
,
Cambridge, MA
, pp.
147
215
.
6.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Analysis of the Thermodynamic Potential of Supercritical Carbon Dioxide Cycles: A Systematic Approach
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051701
. 10.1115/1.4038125
7.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia Report SAND2010-0171.
8.
Noall
,
J. S.
, and
Pasch
,
J. J.
,
2014
, “
Achievable Efficiency and Stability of Supercritical CO2 Compression Systems Main Compressor Design Discussion
,”
The 4th International Symposium—Supercritical CO2 Power Cycles
,
Pittsburgh, PA
,
Sept. 2014
, pp.
1
10
.
9.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Reference Database 23: Reference Fluid Thermodynamic and Transport Properties–REFPROP
, Version 9.1,” Standard Reference Data Program.
10.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
. 10.1063/1.555991
11.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sanchez
,
D.
, and
Martinez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
(
C
), pp.
152
183
. 10.1016/j.apenergy.2017.02.048
12.
Astolfi
,
M.
,
Alfani
,
D.
,
Lasala
,
S.
, and
Macchi
,
E.
,
2018
, “
Comparison Between ORC and CO2 Power Systems for the Exploitation of Low-Medium Temperature Heat Sources
,”
Energy
,
161
(
C
), pp.
1250
1261
. 10.1016/j.energy.2018.07.099
13.
Oh
,
H. W.
,
Yoon
,
E. S.
, and
Chung
,
M. K.
,
1997
, “
An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
211
(
4
), pp.
331
338
. 10.1243/0957650971537231
14.
Lee
,
J.
,
Lee
,
J. I.
,
Yoon
,
H. J.
, and
Cha
,
J. E.
,
2014
, “
Supercritical Carbon Dioxide Turbomachinery Design for Water-Cooled Small Modular Reactor Application
,”
Nucl. Eng. Des.
,
270
, pp.
76
89
. 10.1016/j.nucengdes.2013.12.039
15.
Ameli
,
A.
,
Afzalifar
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2019
, “
Centrifugal Compressor Design for Near-Critical Point Applications
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031016
. 10.1115/1.4040691
16.
Meroni
,
A.
,
Zühlsdorf
,
B.
,
Elmegaard
,
B.
, and
Haglind
,
F.
,
2018
, “
Design of Centrifugal Compressors for Heat Pump Systems
,”
Appl. Energy
,
232
, pp.
139
156
. 10.1016/j.apenergy.2018.09.210
17.
Wiesner
,
F. J.
,
1967
, “
A Review of Slip Factors for Centrifugal Impellers
,”
J. Eng. Gas Turbines Power
,
89
(
4
), pp.
558
566
. 10.1115/1.3616734
18.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
,
ASME Press
,
New York
.
19.
Jansen
,
W.
,
1967
, “
A Method for Calculating the Flow in a Centrifugal Impeller When Entropy Gradients Are Present
,”
Royal Society Conference on Internal Aerodynamics (Turbomachinery)
,
London, UK
, pp.
133
146
.
20.
Lettieri
,
C.
,
Baltadjiev
,
N. D.
,
Casey
,
M.
, and
Spakovszky
,
Z. S.
,
2014
, “
Low-Flow-Coefficient Centrifugal Compressor Design for Supercritical CO2
,”
ASME J. Turbomach.
,
136
(
8
), p.
081008
. 10.1115/1.4026322
21.
Wright
,
S. A.
,
Pickard
,
P. S.
,
Vernon
,
M. E.
,
Radel
,
R. F.
, and
Fuller
,
R.
,
2009
, “
Description and Test Results From a Supercritical CO2 Brayton Cycle Development Program
,”
7th International Energy Conversion Engineering Conference
,
Denver, CO
,
Aug. 2–5
, pp.
1
13
.
22.
Persico
,
G.
, and
Pini
,
M.
,
2017
, “8—Fluid Dynamic Design of Organic Rankine Cycle Turbines,”
Organic Rankine Cycle (ORC) Power Systems
,
E.
Macchi
and
M.
Astolfi
, eds.,
Woodhead Publishing
,
Cambridge, MA
, pp.
253
297
.
23.
Wilson
,
D.
,
1984
,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
MIT Press
,
Boston, MA
.
24.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
. 10.1243/PIME_PROC_1970_185_048_02
25.
Sawyer
,
J.
,
1972
,
Gas Turbine Engineering Handbook
,
Gas Turbine Publications
,
Stamford, CT
.
26.
Zweifel
,
O.
,
1945
, “
The Spacing of Turbo-Machine Blading Especially With Large Angular Deflection
,”
Brown Boveri Rev.
,
32
(
12
), pp.
436
444
.
27.
Casati
,
E.
,
Vitale
,
S.
,
Pini
,
M.
,
Persico
,
G.
, and
Colonna
,
P.
, “
Preliminary Design Method for Small Scale Centrifugal ORC Turbines
,” http://asme-orc2013.fyper.com/uploads/File/PPT$%$20155.pdf, Accessed October 26, 2018.
28.
Bahamonde
,
S.
,
Pini
,
M.
,
De Servi
,
C.
,
Rubino
,
A.
, and
Colonna
,
P.
,
2017
, “
Method for the Preliminary Fluid Dynamic Design of High-Temperature Mini-Organic Rankine Cycle Turbines
,”
J. Eng. Gas Turbines Power
,
139
(
8
), p.
082606
. 10.1115/1.4035841
29.
Pini
,
M.
,
Persico
,
G.
,
Casati
,
E.
, and
Dossena
,
V.
,
2013
, “
Preliminary Design of a Centrifugal Turbine for Organic Rankine Cycle Applications
,”
J. Eng. Gas Turbines Power
,
135
(
4
), p.
042312
. 10.1115/1.4023122
30.
Meroni
,
A.
,
Andreasen
,
J. G.
,
Persico
,
G.
, and
Haglind
,
F.
,
2018
, “
Optimization of Organic Rankine Cycle Power Systems Considering Multistage Axial Turbine Design
,”
Appl. Energy
,
209
, pp.
339
354
. 10.1016/j.apenergy.2017.09.068
31.
Eckert
,
B.
, and
Schnell
,
E.
,
1961
,
Axial-und Radial- Kompressoren
,
Springer Verlag
,
New York
.
32.
Whitfield
,
A.
, and
Baines
,
N. C.
,
1990
,
Design of Radial Turbomachines
,
Longman Singapore Publishers (Pte) Ltd.
,
Essex, UK
.
33.
Ludtke
,
K. H.
,
2004
,
Process Centrifugal Compressors: Basics, Function, Operation, Design, Application
,
Springer
,
New York
.
34.
Macchi
,
E.
, and
Perdichizzi
,
A.
,
1981
, “
Efficiency Prediction for Axial-Flow Turbines Operating With Nonconventional Fluids
,”
J. Eng. Power
,
103
(
4
), p.
718
. 10.1115/1.3230794
35.
Macchi
,
E.
, and
Astolfi
,
M.
,
2017
, “9—Axial Flow Turbines for Organic Rankine Cycle Applications,”
Organic Rankine Cycle (ORC) Power Systems
,
E.
Macchi
, and
M.
Astolfi
, eds.,
Woodhead Publishing
,
Cambridge, MA
, pp.
299
319
.
You do not currently have access to this content.