Abstract

More and more attention is being devoted to assessing severity of the engine operation for a high number of flights in a minimum of time. Compressor erosion is one of the physical phenomena contributing to this severity. Hence, an effective method is developed which allows a general judgment of the severity of engine operation with regard to compressor erosion. The shortening of the camber line at blade leading edge is selected as the parameter describing the degree of severity. The particle impingement conditions experienced by compressor blades throughout a flight mission are computed using a flight mission simulation and a non-dimensional engine model. Local flow conditions of all compressor blade rows are derived from mean line computations. A dimensional analysis of a straight through swirling annulus flow led to a simplified model of particle separation within the compressor blade rows. It turns out that bypass ratio, bleed setting, and degree of particle separation changing from operating point to operating point are significant drivers of erosion. Fan root and booster suffer less from compressor erosion than the high pressure compressor. The flight segments taxi, take-off, take-off climb, climb, and cruise are significantly impacting the severity of a flight mission with regard to compressor erosion.

References

1.
Troha
,
W.
, and
Stabrylla
,
R.
,
1980
, “
Effect of Aircraft Power Plant Usage on Turbine Engine Relative Durability/Life
,” AIAA/SAE/ASME 16th Joint Propulsion Conference, 80-1115, June 30–July 2,
Hartford, CT
, pp.
1
11
.
2.
Grant
,
G.
, and
Tabakoff
,
W.
,
1973
, “An Experimental Investigation of the Erosive Characteristics of 2024 Aluminum Alloy,” National Technical Information Service, U.S. Department of Commerce, Springfield, VA, Technical Report No. 73-37, https://apps.dtic.mil/sti/citations/AD0764267
3.
Oka
,
Y. I.
,
Okamura
,
K.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact - Part 1: Effects of Impact Parameters on a Predictive Equation
,”
Wear
,
259
(
1–6
), pp.
95
101
.
4.
Hufnagel
,
M.
,
Staudacher
,
S.
, and
Koch
,
C.
,
2018
, “
Experimental and Numerical Investigation of the Mechanical and Aerodynamic Particle Size Effect in High-Speed Erosive Flows
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102604
.
5.
Bronstein
,
I. N.
,
Semendjajew
,
K. A.
,
Musiol
,
G.
, and
Mühlig
,
H.
,
2013
,
Taschenbuch der Mathematik
, 9th ed.,
Verlag Europa-Lehrmittel
,
Haan-Gruiten, Germany
.
6.
Brüning
,
G.
,
Hafer
,
X.
, and
Sachs
,
G.
,
1986
,
Flugleistungen: Grundlagen · Flugzustände · Flugabschnitte Aufgaben und Lösungen
, 2nd ed.,
Springer-Verlag
,
Berlin/Heidelberg, Germany
.
7.
Pamadi
,
B. N.
,
1998
,
Performance, Stability, Dynamics, and Control of Airplanes
, 1st ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
8.
Torenbeek
,
E.
,
1982
,
Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, With Emphasis on Layout, Aerodynamic Design, Propulsion and Performance
, 1st ed.,
Kluwer Academic Publishers
,
Dordrecht, Netherlands
.
9.
Scheiderer
,
J.
,
2008
,
Angewandte Flugleistung: Eine Einführung in die operationelle Flugleistung vom Start bis zur Landung
, 1st ed,
Springer-Verlag
,
Berlin/Heidelberg, Germany
.
10.
McCormick
,
B. W.
,
1979
,
Aerodynamics, Aeronautics and Flight Mechanics
, 1st ed.,
John Wiley & Sons
,
New York
.
11.
Lowry
,
J. G.
, and
Polhamus
,
E. C.
,
1957
, “A Method for Predicting Lift Increments Due to Flap Deflection at Low Angles of Attack in Incompressible Flow,” National Advisory Committee for Aeronautics, Washington, DC, Technical Note 3911, https://ntrs.nasa.gov/citations/19930084818
12.
Howe
,
D.
,
2000
,
Aircraft Conceptual Design Synthesis
, 1st ed,
Professional Engineering Publishing Limited
,
London and Bury St Edmunds, UK
.
13.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
, 2nd ed.,
Blackwell Science
,
Oxford, UK
.
14.
Cumpsty
,
N. A.
,
2009
,
Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines
, 7th ed.,
Cambridge University Press
,
New York
.
15.
Deutsches Institut für Normung e. V.
,
1979
,
Normatmosphäre
,
Beuth Verlag
,
Berlin, Germany, DIN ISO 2533
. https://www.beuth.de/en/standard/din-iso-2533/793748
16.
Hobbs
,
P. V.
,
1993
,
Aerosol-Cloud-Climate Interactions
, 1st ed.,
Academic Press, Inc
,
San Diego, CA
.
17.
Israel
,
R.
, and
Rosner
,
D. E.
,
1983
, “
Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles From a Compressible Gas Flow
,”
Aerosol Sci. Technol.
,
2
(
1
), pp.
45
51
.
18.
Wessel
,
R. A.
, and
Righi
,
J.
,
1988
, “
Generalized Correlations for Inertial Impaction of Particles on a Circular Cylinder
,”
Aerosol Sci. Technol.
,
9
(
1
), pp.
29
60
.
19.
Ramachandran
,
G.
,
Raynor
,
P. C.
, and
Leith
,
D.
,
1994
, “
Collection Efficiency and Pressure Drop for a Rotary-Flow Cyclone
,”
Filtration Separation
,
31
(
6
), pp.
631
636
.
20.
International Organization for Standardization
,
1997
,
Road Vehicles - Test Dust for Filter Evaluation – Part 1: Arizona Test Dust
,
Beuth Verlag
,
Berlin, Germany, ISO 12103-1
.
21.
Schrade
,
M.
,
2016
,
Untersuchungen zum Einfluss des Strahlverschleißes auf Hochdruckverdichterschaufeln von Turboflugtriebwerken
, 1st ed.,
Dr. Hut
,
München, Germany
.
22.
Hufnagel
,
M.
,
Werner-Spatz
,
C.
,
Koch
,
C.
, and
Staudacher
,
S.
,
2018
, “
High-Speed Shadowgraphy Measurements of an Erosive Particle-Laden Jet Under High-Pressure Compressor Conditions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012604
.
23.
Sokolov
,
M.
,
Lorenz
,
M.
,
Rostamian
,
M.
,
Koch
,
C.
,
Weissschuh
,
M.
, and
Staudacher
,
S.
,
2019
, “
Advances in High-Speed Linear Design Technology: Novel Approach to Sidewall Geometry Design for Erosion Tests
,” ASME Turbo Expo 2019, Jun. 17–21,
Phoenix, AZ
, Paper No. GT2019-90743.
24.
Tabakoff
,
W.
, and
Balan
,
C.
,
1982
, “Compressor Cascade Performance Deterioration Caused by Sand Ingestion,” National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, Technical Report No. NASA CR 168067, https://ntrs.nasa.gov/citations/19830008015
25.
Leishman
,
B. A.
,
Cumpsty
,
N. A.
, and
Denton
,
J. D.
,
2007
, “
Effects of Bleed Rate and Endwall Location on the Aerodynamic Behavior of a Circular Hole Bleed Off-Take
,”
ASME J. Turbomach.
,
129
(
4
), pp.
645
658
.
26.
Leishman
,
B. A.
,
Cumpsty
,
N. A.
, and
Denton
,
J. D.
,
2007
, “
Effects of Inlet Ramp Surfaces on the Aerodynamic Behavior of Bleed Hole and Bleed Slot Off-Take Configurations
,”
ASME J. Turbomach.
,
129
(
4
), pp.
659
668
.
27.
Grimshaw
,
S. D.
,
Pullan
,
G.
, and
Hynes
,
T. P.
,
2016
, “
Modeling Nonuniform Bleed in Axial Compressors
,”
ASME J. Turbomach.
,
138
(
9
), p.
091010
.
28.
Zapp Materials Engineering GmbH
,
2013
,
Specialty Materials TiAl6V4 Grade 5
,
Zapp Materials Engineering GmbH
,
Ratingen, Germany
.
29.
SLM Solutions Group AG
,
2019
,
Material Data Sheet Ni-Alloy IN718 / 2.4668
,
SLM Solutions Group AG
,
Lübeck, Germany
.
30.
VDM Metals International GmbH
,
2016
,
VDM Alloy 718
,
VDM Metals International GmbH
,
Werdohl, Germany
.
31.
Vogel
,
A.
,
Durant
,
A. J.
,
Cassiani
,
M.
,
Clarkson
,
R. J.
,
Slaby
,
M.
,
Diplas
,
S.
,
Krüger
,
K.
, and
Stohl
,
A.
,
2019
, “
Simulation of Volcanic Ash Ingestion Into a Large Aero Engine: Particle–Fan Interactions
,”
ASME J. Turbomach.
,
141
(
1
), p.
011010
.
32.
Saxena
,
S.
,
Jothiprasad
,
G.
,
Bourassa
,
C.
, and
Pritchard
,
B.
,
2017
, “
Numerical Simulation of Particulates in Multistage Axial Compressors
,”
ASME J. Turbomach.
,
139
(
3
), p.
031013
.
You do not currently have access to this content.