Abstract

In this study, a turbine cascade squealer tip is optimized by a multi-objective genetic algorithm (MOGA) with varying squealer heights and tip cooling configurations. The three objectives selected are the aerodynamic efficiency, the film cooling effectiveness, and the surface fluid temperature variance. The multi-scale methodology is implemented to reduce the computational cost and to skip the meshing of cooling holes. Two optimization approaches are compared: (a) a conventional method that optimizes an uncooled shape and the cooling configuration sequentially and (b) a method that optimizes shaping and cooling concurrently. The concurrent method is found to obtain better aerodynamic efficiency and heat transfer performance than the conventional optimization. Moreover, the aerodynamic efficiency ranking is changed by adding cooling to the uncooled blades. These observations are due to the strong interaction between the coolant and the tip leakage flow. They indicate that the coolant injected at the tip is not passive as expected in the conventional film cooling designs. By blocking the over tip leakage flow or forming a layer of air to level up the equivalent squealer cavity floor, the coolant can reduce the tip leakage loss, which contradicts the conventional wisdom that the added coolant should always lead to extra losses due to the extra mixing. The detailed observations of the flow field indicate that the influence of the squealer height towards the aerodynamic efficiency is caused by two competing effects: the blockage effect to reduce the tip leakage mass flowrate and the sudden expansion/contraction loss effect to generate additional loss.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Duan
,
P.
,
Tan
,
C.
,
Scribner
,
A.
, and
Malandra
,
A.
,
2018
, “
Loss Generation in Transonic Turbine Blading
,”
ASME J. Turbomach.
,
140
(
4
), p.
041006
.
3.
Shannon
,
K. R.
,
2018
, “
Loss Mechanisms in a Highly Loaded Transonic Axial Turbine Stage
,” Master’s thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
4.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow: Concepts and Applications
,
Cambridge University Press
,
New York
.
5.
Huang
,
A. C.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
,
Clemens
,
E. F.
,
Gegg
,
S. G.
, and
Turner
,
E. R.
,
2013
, “
Blade Loading Effects on Axial Turbine Tip Leakage Vortex Dynamics and Loss
,”
ASME J. Turbomach.
,
135
(
5
), p.
051012
.
6.
Zhou
,
K.
, and
Zhou
,
C.
,
2018
, “
Unsteady Effects of Vortex Interaction on Tip Leakage Vortex Breakdown and Its Loss Mechanism
,”
Aerosp. Sci. Technol.
,
82
, pp.
363
371
.
7.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2014
, “
Winglets for Improved Aerothermal Performance of High Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
9
), p.
091007
.
8.
Schabowski
,
Z.
, and
Hodson
,
H.
,
2014
, “
The Reduction of Over Tip Leakage Loss in Unshrouded Axial Turbines Using Winglets and Squealers
,”
ASME J. Turbomach.
,
136
(
4
), p.
041001
.
9.
Key
,
N. L.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.
10.
Wheeler
,
A.
,
Korakianitis
,
T.
, and
Banneheke
,
S.
,
2012
, “
Tip-Leakage Losses in Subsonic and Transonic Blade Rows
,”
ASME J. Turbomach.
,
135
(
1
), p.
011029
.
11.
Bunker
,
R.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. N Y Acad. Sci.
,
934
(
1
), pp.
64
79
.
12.
Kwak
,
J.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficient and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
,
125
(
3
), pp.
494
502
.
13.
Kwak
,
J.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
14.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J.
,
2008
, “
Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
130
(
2
), p.
021002
.
15.
Hofer
,
T.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions
,” ASME Paper GT2009-59909.
16.
O’Dowd
,
D.
,
Zhang
,
Q.
,
He
,
L.
,
Cheong
,
B.
, and
Tibbott
,
I.
,
2012
, “
Aerothermal Performance of a Cooled Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.
17.
Andreoli
,
V.
,
Braun
,
J.
,
Paniagua
,
G.
,
De Maesschalck
,
C.
,
Bloxham
,
M.
,
Cummings
,
W.
, and
Langford
,
L.
,
2019
, “
Aerothermal Optimization of Fully Cooled Turbine Blade Tips
,”
ASME J. Turbomach.
,
141
(
6
), p.
061007
.
18.
Park
,
J.
,
Lee
,
D.
,
Rhee
,
D.
,
Kang
,
S.
, and
Cho
,
H.
,
2014
, “
Heat Transfer and Film Cooling Effectiveness on the Squealer Tip of a Turbine Blade
,”
Energy
,
72
(
4
), pp.
331
343
.
19.
Yang
,
H.
,
Chen
,
H.C.
, and
Han
,
J.C.
,
2006
, “
Film-Cooling Prediction on Turbine Blade Tip With Various Film Hole Configurations
,”
J. Thermophys. Heat Transfer
,
20
(
3
), pp.
558
568
.
20.
Xue
,
S.
, and
Ng
,
W.
,
2018
, “
Turbine Blade Tip External Cooling Technologies
,”
Aerospace
,
5
(
3
), p.
90
.
21.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
22.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part II: Analysis of Aerothermal Interaction Physics
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052507
.
23.
Wang
,
Z.
,
Zhang
,
Q.
,
Liu
,
Y.
, and
He
,
L.
,
2015
, “
Impact of Cooling Injection on the Transonic Over-Tip Leakage Flow and Squealer Aerothermal Design Optimization
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062603
.
24.
Zhang
,
Q.
, and
He
,
L.
,
2017
, “
Turbine Blade Tip Aero-Thermal Management: Some Recent Advances and Research Outlook
,”
J. Glob. Power Propul. Soc.
,
1
(
4
), pp.
271
287
.
25.
Zhang
,
M.
, and
He
,
L.
,
2015
, “
Combining Shaping and Flow Control for Aerodynamic Optimization
,”
AIAA J.
,
53
(
4
), pp.
888
901
.
26.
De Maesschalck
,
C.
,
Andreoli
,
V.
,
Paniagua
,
G.
,
Gillen
,
T.
, and
Barker
,
B.
,
2019
, “
Aerothermal Optimization of Turbine Squealer Tip Geometries With Arbitrary Cooling Injection
,” ASME Paper GT2019-91208.
27.
Cernat
,
B.
,
Pátý
,
M.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part I: Turbine Rainbow Rotor Testing and Numerical Methods
,”
ASME J. Turbomach.
,
141
(
1
), p.
011006
.
28.
Pátý
,
M.
,
Cernat
,
B.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part II: Tip Flow Analysis and Loss Mechanisms
,”
ASME J. Turbomach.
,
141
(
1
), p.
011007
.
29.
Pritchard
,
L.
,
1985
, “
An Eleven Parameter Axial Turbine Airfoil Geometry Model
,” ASME Paper 85-GT-219.
30.
Li
,
H.
,
1994
, “
Shifted Periodic Grids for Two- and Three-Dimensional Cascade Flows
,” AIAA Paper 94-0754.
31.
Duan
,
P.
, and
He
,
L.
,
2020
, “
Application of Multiscale Methodology for Transonic Turbine Blade Tip Cooling Design
,”
ASME J. Turbomach.
,
142
(
8
), p.
081011
.
32.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
,
2000
, “
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation
,”
Evol. Comput.
,
8
(
2
), pp.
173
195
.
33.
Deb
,
K.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
,”
Evol. Comput.
,
6
(
2
), pp.
182
197
.
34.
He
,
L.
,
2018
, “
Multiscale Block Spectral Solution for Unsteady Flows
,”
Int. J. Numer. Methods Fluids
,
86
(
10
), pp.
655
678
.
35.
He
,
L.
,
2012
, “
Block-Spectral Approach to Film-Cooling Modeling
,”
ASME J. Turbomach.
,
134
(
2
), p.
021018
.
36.
He
,
L.
,
2013
, “
Block-Spectral Mapping for Multi-Scale Solution
,”
J. Comput. Phys.
,
250
, pp.
13
26
.
37.
He
,
L.
,
2013
, “
Fourier Spectral Modelling for Multi-Scale Aero-Thermal Analysis
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
118
129
.
38.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip AeroDynamic Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.
You do not currently have access to this content.