Abstract

High-pressure turbine blade tips are critical for gas turbine performance and are sensitive to small geometric variations. For this reason, it is increasingly important for experiments and simulations to consider real geometry features. One commonly absent detail is the presence of welding beads on the cavity of the blade tip, which are an inherent by-product of the blade manufacturing process. This paper therefore investigates how such welds affect the Nusselt number, film cooling effectiveness and aerodynamic performance.

Measurements are performed on a linear cascade of high-pressure turbine blades at engine realistic Mach and Reynolds numbers. Two cooled blade tip geometries were tested: a baseline squealer geometry without welding beads, and a case with representative welding beads added to the tip cavity. Combinations of two tip gaps and several coolant mass flow rates were analyzed. Pressure sensitive paint was used to measure the adiabatic film cooling effectiveness on the tip, which is supplemented by heat transfer coefficient measurements obtained via infrared thermography. Drawing from all of this data, it is shown that the weld beads have a generally detrimental impact on thermal performance, but with local variations. Aerodynamic loss measured downstream of the cascade is shown to be largely insensitive to the weld beads.

References

1.
Dutta
,
S.
,
Ekkad
,
S.
, and
Han
,
J.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
FL
.
2.
Harvey
,
N.
,
2004
, von Karman Lecture Series: Turbine Blade Tip Design and Tip Clearance Treatment.
3.
Dixon
,
S.
, and
Hall
,
C.
,
2016
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 7th ed.,
Elsevier
,
FL
.
4.
Boyle
,
R.
,
Haas
,
J.
, and
Katsanis
,
T.
,
1984
, “
Comparison Between Measured Turbine Stage Performance and the Predicted Performance Using Quasi-3D Flow and Boundary Layer Analyses
, JO—NASA Technical Memorandum.
5.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
6.
Dunn
,
M. G.
, and
Haldeman
,
W.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
692
698
.
7.
Glezer
,
B.
,
2004
, von Karman Lecture Series: Turbine Blade Tip Design and Tip Clearance Treatment. VKI LS 2004-02, Turbine Blade Tip Design and Tip Clearance Treatment.
8.
Yamamoto
,
A.
,
1988
, “
Interaction Mechanisms Between Tip Leakage Flow and the Passage Vortex in a Linear Turbine Rotor Cascade
,”
ASME J. Turbomach.
,
110
(
3
), pp.
329
338
.
9.
Moore
,
J.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.
10.
Azad
,
G. S.
,
Han
,
J.-C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2002
, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
452
459
.
11.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J.-C.
,
Lee
,
C. P.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near-Tip Regions of a Gas Turbine Blade with Single or Double Squealer
,”
ASME J. Turbomach.
,
125
(
4
), pp.
778
787
.
12.
Wheeler
,
S.
,
Atkins
,
R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
13.
Naik
,
S.
,
Georgakis
,
C.
,
Hofer
,
T.
, and
Lengani
,
D.
,
2011
, “
Heat Transfer and Film Cooling of Blade Tips and Endwalls
,”
ASME J. Turbomach.
,
134
(
4
), p.
041004
.
14.
Arisi
,
A.
,
Phillips
,
J.
,
Ng
,
W. F.
,
Xue
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow
,”
ASME J. Turbomach.
,
138
(
10
), p.
101007
.
15.
Lee
,
W.
,
Dawes
,
W.
,
Goenaga
,
F.
, and
Coull
,
J.
,
2018
, “
The Impact of Manufacturing Variability on High Pressure Turbine Profile Loss
,”
2018 AIAA Aerospace Sciences Meeting.
16.
Taylor
,
D.
, and
Longley
,
J.
,
2018
, Effects of Stator Platform Geometry Features on Blade Row Performance. GPPS Montreal 2018. 10.5281.
17.
Saul
,
A.
,
Ireland
,
P.
,
Coull
,
J.
,
Wong
,
H.
,
Li
,
H.
, and
Romero
,
E.
,
2018
, “
An Experimental Investigation of Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient on a Transonic Squealer Tip
,”
ASME J. Turbomach.
,
141
(
9
), p.
091005
.
18.
Bunker
,
R.
,
1997
, “
Separate and Combined Effects of Surface Roughness and Turbulence Intensity on Vane Heat Transfer
,”
Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
June 2–5
, p.
V003T09A022
.
19.
Bunker
,
R.
, and
Balley
,
J.
,
2001
, “
Effect of Squealer Cavity Depth and Oxidation on Turbine Blade Tip Heat Transfer
,”
Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air
,
June 4–7
, p.
V003T01A038
.
20.
Zhang
,
Q.
,
O’Dowd
,
D.
,
He
,
L.
,
Wheeler
,
A.
,
Ligrani
,
P.
, and
Cheong
,
B.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
21.
O’Dowd
,
D.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME. J. Turbomach.
,
133
(
2
), p.
021028
.
22.
Oldfield
,
L.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
23.
Foss
,
J.
,
Tropea
,
C.
, and
Yarin
,
A.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer
,
New York
.
24.
Zhang
,
L.
, and
Fox
,
M.
,
1999
, “
Flat Plate Film Cooling Measurements Using PSP Gas Chromatograph Techniques
,”
Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference.
25.
Liu
,
T.
,
Guille
,
M.
, and
Sullivan
,
J. P.
,
2001
, “
Accuracy of Pressure-Sensitive Paint
,”
AIAA J.
,
39
(
1
), pp.
103
112
.
26.
Han
,
J.
, and
Rallabandi
,
A.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
013001-1
013001-21
.
27.
Bauer
,
K.
,
Grigull
,
U.
, and
Straub
,
J.
,
1980
, “
Influence of Free-Stream Turbulence Intensity on Heat Transfer in the Two- Dimensional Turbulent Boundary Layer of an Accelerated Compressible Flow
,”
Appl. Therm. Eng.
,
23
(
12
), pp.
1635
1642
.
You do not currently have access to this content.