Abstract

With the ever-increasing aerodynamic and thermal loads, the endwalls of modern gas turbines have become critical areas that are susceptible to manufacturing and operational uncertainties, making them highly prone to thermal failures. Therefore, it is of vital importance to quantify the impacts of input uncertainties on the aero-thermal performance of endwalls. First, based on the Kriging surrogate, an efficient uncertainty quantification (UQ) method suitable for expensive computational fluid dynamics (CFD) problems is proposed. By using this method, the impacts of slot geometry deviations (slot width, endwall misalignment) and mainstream condition fluctuations (turbulence intensity, inlet flow angle) on the aero-thermal performance of endwalls are quantified. Results show that the actual performance of endwalls has a high probability of deviating from its nominal value. The maximum deviations of aerodynamic loss, area-averaged film cooling effectiveness, and area-averaged Nusselt number reach 0.33%, 45%, and 5.0%, respectively. The critical regions that are most sensitive to the input uncertainties are also identified. Second, a global sensitivity analysis method is also performed to pick out the significant uncertain parameters and explore the relationship between input uncertainties and performance output. The inlet flow angle is proved to be the most significant parameter among the four input uncertain parameters. Besides, a positive incidence angle is found to be detrimental to both the aerodynamic performance and the thermal management of endwalls. Finally, the influence mechanisms of the inlet flow angle on endwall aero-thermal performance are clarified by a fundamental analysis of flow and thermal fields.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
2.
Yin
,
F.
, and
Rao
,
A. G.
,
2017
, “
Performance Analysis of an Aero Engine With Inter-Stage Turbine Burner
,”
Aeronaut. J.
,
121
(
1245
), pp.
1605
1626
.
3.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
.
4.
D’Ammaro
,
A.
, and
Montomoli
,
F.
,
2013
, “
Uncertainty Quantification and Film Cooling
,”
Comput. Fluids
,
71
, pp.
320
326
.
5.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer.
,
110
(
4
), pp.
862
869
.
6.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.
7.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
8.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
9.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J.
,
22
(
2
), pp.
249
270
.
10.
Papa
,
M.
,
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2012
, “
Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041014
.
11.
Harmand
,
S.
,
Pelle
,
J.
,
Poncet
,
S.
, and
Shevchuk
,
I. V.
,
2013
, “
Review of Fluid Flow and Convective Heat Transfer Within Rotating Disk Cavities With Impinging Jet
,”
Int. J. Therm. Sci.
,
67
, pp.
1
30
.
12.
Thole
,
K. A.
, and
Knost
,
D. G.
,
2005
, “
Heat Transfer and Film-Cooling for the Endwall of a First Stage Turbine Vane
,”
Int. J. Heat Mass Transfer.
,
48
(
25–26
), pp.
5255
5269
.
13.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.
14.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
The Effects of Varying the Combustor-Turbine Gap
,”
ASME J. Turbomach.
,
129
(
4
), pp.
756
764
.
15.
Wright
,
L. M.
,
Gao
,
Z.
,
Yang
,
H.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,”
ASME J. Heat Transfer.
,
130
(
7
), p.
071702
.
16.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
(
6
), p.
061019
.
17.
Song
,
L.
,
Zhu
,
P.
,
Li
,
J.
, and
Feng
,
Z.
,
2017
, “
Effect of Purge Flow on Endwall Flow and Heat Transfer Characteristics of a Gas Turbine Blade
,”
Appl. Therm. Eng.
,
110
, pp.
504
520
.
18.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2008
, “
The Effect of Combustor-Turbine Interface Gap Leakage on the Endwall Heat Transfer for a Nozzle Guide Vane
,”
ASME J. Turbomach.
,
130
(
4
), p.
041019
.
19.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2011
, “
The Effect of the Combustor-Turbine Slot and Midpassage Gap on Vane Endwall Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041002
.
20.
Rehder
,
H. J.
, and
Dannhauer
,
A.
,
2007
, “
Experimental Investigation of Turbine Leakage Flows on the Three-Dimensional Flow Field and Endwall Heat Transfer
,”
ASME J. Turbomach.
,
129
(
3
), pp.
608
618
.
21.
Hada
,
S.
, and
Thole
,
K. A.
,
2011
, “
Computational Study of a Midpassage Gap and Upstream Slot on Vane Endwall Film-Cooling
,”
ASME J. Turbomach.
,
133
(
1
), p.
011024
.
22.
Li
,
Z.
,
Liu
,
L.
,
Li
,
J.
,
Sibold
,
R. A.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Effects of Upstream Step Geometry on Axisymmetric Converging Vane Endwall Secondary Flow and Heat Transfer at Transonic Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121008
.
23.
Montomoli
,
F.
,
Carnevale
,
M.
,
D’Ammaro
,
A.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2015
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer
,
Berlin
.
24.
Walters
,
R. W.
, and
Huyse
,
L.
,
2002
, “
Uncertainty Analysis for Fluid Mechanics with Applications
,”
NASA/CR Report No. 2002-211449
.
25.
Ghisu
,
T.
, and
Shahpar
,
S.
,
2018
, “
Affordable Uncertainty Quantification for Industrial Problems: Application to Aero-Engine Fans
,”
ASME J. Turbomach.
,
140
(
6
), p.
061005
.
26.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Comput. Fluids
,
46
(
1
), pp.
362
368
.
27.
Wunsch
,
D.
,
Hirsch
,
C.
,
Nigro
,
R.
, and
Coussement
,
G.
,
2015
, “
Quantification of Combined Operational and Geometrical Uncertainties in Turbomachinery Design
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montréal, Canada
,
June 15–19
, p.
V02CT45A018
.
28.
Montomoli
,
F.
,
Massini
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2012
, “
Geometrical Uncertainty and Film Cooling: Fillet Radii
,”
ASME J. Turbomach.
,
134
(
1
), p.
011019
.
29.
Sakai
,
E.
,
Bai
,
M.
,
Ahlfeld
,
R.
, and
Montomoli
,
F.
,
2018
, “
Uncertainty Quantification Analysis of Back Facing Steps Film Cooling Configurations
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, p.
V05AT12A009
.
30.
Zhu
,
P.
,
Yan
,
Y.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Uncertainty Quantification of Heat Transfer for a Highly Loaded Gas Turbine Blade Endwall Using Polynomial Chaos
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
, p.
V02CT45A008
.
31.
Song
,
L.
,
Guo
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Research on Metamodel-Based Global Design Optimization and Data Mining Methods
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092604
.
32.
Oakley
,
J. E.
, and
O'Hagan
,
A.
,
2004
, “
Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach
,”
J. R. Stat. Soc. Ser. B Stat. Methodol.
,
66
(
3
), pp.
751
769
.
33.
Eldred
,
M. S.
, and
Burkardt
,
J.
,
2009
, “
Comparison of Non-Intrusive Polynomial Chos and Stochastic Collocation Methods for Uncertainty Quantification
,”
47th AIAA Aerospace Sciences Meeting
,
Orlando, FL
,
Jan. 5–8
, AIAA Paper No. 2009–0976.
You do not currently have access to this content.