Abstract

The direct prediction model for adiabatic film cooling effectiveness distribution and inverse prediction model for design parameters are studied in this article. Convolutional neural networks (CNNs) are trained on a set of simulated adiabatic film cooling effectiveness contours parameterized by blowing ratio, density ratio, mainstream turbulence intensity, injection angle, and compound angle. The direct model and the inverse model are able to approximate the data in the test set with plausible accuracy. The absolute error of spatial averaged effectiveness no larger than 0.03 could be obtained in the test set by a direct model with time consumption less than 1 ms for a single case. The inverse model is the first model of its kind, which accomplished the inverse mapping from contours to parameters. It has been demonstrated that the concatenation of inverse model with the pretrained direct model, which can be treated as a complex loss function, has preferable approximation performance compared with simple mean squared error (MSE) loss function in the training of the inverse model, thus confirming the necessity of adopting specialized modeling strategies for inverse problems.

References

1.
Reed
,
R. C.
,
2006
,
The Superalloys: Fundamentals and Applications
,
Cambridge University Press
,
New York
.
2.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
3.
Goldstein
,
R. J.
,
1971
,
Advances in Heat Transfer
,
J.
Thomas
,
F.
Irvine
, and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
, pp.
321
379
.
4.
Chowdhury
,
N. H. K.
,
Zirakzadeh
,
H.
, and
Han
,
J.-C.
,
2017
, “
A Predictive Model for Preliminary Gas Turbine Blade Cooling Analysis
,”
ASME J. Turbomach.
,
139
(
9
), p.
091010
.
5.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2010
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
.
6.
Chen
,
A. F.
,
Li
,
S.-J.
, and
Han
,
J.-C.
, “
Film Cooling With Forward and Backward Injection for Cylindrical and Fan-Shaped Holes Using PSP Measurement Technique
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
American Society of Mechanical Engineers
, p.
V05BT13A042
.
7.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
.
8.
Jordan
,
M. I.
, and
Mitchell
,
T. M.
,
2015
, “
Machine Learning: Trends, Perspectives, and Prospects
,”
Science
,
349
(
6245
), pp.
255
260
.
9.
Kutz
,
J. N.
,
2017
, “
Deep Learning in Fluid Dynamics
,”
J. Fluid Mech.
,
814
, pp.
1
4
.
10.
Ladický
,
L.
,
Jeong
,
S.
,
Solenthaler
,
B.
,
Pollefeys
,
M.
, and
Gross
,
M.
,
2015
, “
Data-Driven Fluid Simulations Using Regression Forests
,”
ACM Trans. Graph.
,
34
(
6
), pp.
1
9
, Article 199.
11.
Ling
,
J.
,
Kurzawski
,
A.
, and
Templeton
,
J.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks With Embedded Invariance
,”
J. Fluid Mech.
,
807
, pp.
155
166
.
12.
Milani
,
P. M.
,
Ling
,
J.
,
Saez-Mischlich
,
G.
,
Bodart
,
J.
, and
Eaton
,
J. K.
,
2018
, “
A Machine Learning Approach for Determining the Turbulent Diffusivity in Film Cooling Flows
,”
ASME J. Turbomach.
,
140
(
2
), p.
021006
.
13.
Milani
,
P. M.
,
Ling
,
J.
, and
Eaton
,
J. K.
,
2018
, “
Physical Interpretation of Machine Learning Models Applied to Film Cooling Flows
,”
ASME J. Turbomach.
,
141
(
1
), p.
011004
.
14.
Milani
,
P. M.
,
Ling
,
J.
, and
Eaton
,
J. K.
,
2020
, “
Generalization of Machine-Learned Turbulent Heat Flux Models Applied to Film Cooling Flows
,”
ASME J. Turbomach.
,
142
(
1
), p.
011007
.
15.
Milani
,
P. M.
,
Ling
,
J.
, and
Eaton
,
J. K.
,
2021
, “
Turbulent Scalar Flux in Inclined Jets in Crossflow: Counter Gradient Transport and Deep Learning Modelling
,”
J. Fluid Mech.
,
906
, p.
A27
.
16.
Maulik
,
R.
,
San
,
O.
,
Jacob
,
J. D.
, and
Crick
,
C.
,
2019
, “
Sub-Grid Scale Model Classification and Blending Through Deep Learning
,”
J. Fluid Mech.
,
870
, pp.
784
812
.
17.
Akdag
,
U.
,
Komur
,
M. A.
, and
Akcay
,
S.
,
2016
, “
Prediction of Heat Transfer on a Flat Plate Subjected to a Transversely Pulsating Jet Using Artificial Neural Networks
,”
Appl. Therm. Eng.
,
100
, pp.
412
420
.
18.
Wang
,
C.
,
Zhang
,
J.
,
Zhou
,
J.
, and
Alting
,
S. A.
,
2015
, “
Prediction of Film-Cooling Effectiveness Based on Support Vector Machine
,”
Appl. Therm. Eng.
,
84
, pp.
82
93
.
19.
Lecun
,
Y.
,
Boser
,
B. E.
,
Denker
,
J. S.
,
Henderson
,
D.
,
Howard
,
R. E.
,
Hubbard
,
W.
, and
Jackel
,
L. D.
,
1989
, “
Backpropagation Applied to Handwritten Zip Code Recognition
,”
Neural Comput.
,
1
(
4
), pp.
541
551
.
20.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G.
,
2017
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
21.
Yang
,
J.
,
Price
,
B.
,
Cohen
,
S.
,
Lee
,
H.
, and
Yang
,
M.
, “
Object Contour Detection With a Fully Convolutional Encoder-Decoder Network
,”
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp.
193
202
.
22.
Sun
,
Y.
,
Chen
,
Y.
,
Wang
,
X.
, and
Tang
,
X.
, “
Deep Learning Face Representation by Joint Identification-Verification
,”
Proceedings of the 27th International Conference on Neural Information Processing Systems
,
MIT Press
, pp.
1988
1996
.
23.
Chen
,
H.
,
Qi
,
X.
,
Yu
,
L.
, and
Heng
,
P.
, “
DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation
,”
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp.
2487
2496
.
24.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015
,
Springer International Publishing
, pp.
234
241
.
25.
Yang
,
L.
,
Dai
,
W.
,
Rao
,
Y.
, and
Chyu
,
M. K.
,
2019
, “
Optimization of the Hole Distribution of an Effusively Cooled Surface Facing Non-Uniform Incoming Temperature Using Deep Learning Approaches
,”
Int. J. Heat Mass Transfer
,
145
, p.
118749
.
26.
Guo
,
X.
,
Li
,
W.
, and
Iorio
,
F.
, “
Convolutional Neural Networks for Steady Flow Approximation
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery
, pp.
481
490
.
27.
Kim
,
B.
,
Azevedo
,
V. C.
,
Thuerey
,
N.
,
Kim
,
T.
,
Gross
,
M.
, and
Solenthaler
,
B.
,
2019
, “
Deep Fluids: A Generative Network for Parameterized Fluid Simulations
,”
Comput. Graphics Forum
,
38
(
2
), pp.
59
70
.
28.
Kennon
,
S. R.
, and
Dulikravich
,
G. S.
,
1986
, “
Inverse Design of Multiholed Internally Cooled Turbine Blades
,”
Int. J. Numer. Methods Eng.
,
22
(
2
), pp.
363
375
.
29.
Kennon
,
S. R.
, and
Dulikravich
,
G. S.
, “
Inverse Design of Coolant Flow Passage Shapes With Partially Fixed Internal Geometries
,”
Proceedings of the ASME 1985 International Gas Turbine Conference and Exhibit
, p.
V003T09A016
, Paper No. 85-GT-118.
30.
Huang
,
C.-H.
, and
Hsiung
,
T.-Y.
,
1999
, “
An Inverse Design Problem of Estimating Optimal Shape of Cooling Passages in Turbine Blades
,”
Int. J. Heat Mass Transfer
,
42
(
23
), pp.
4307
4319
.
31.
Jin
,
K. H.
,
McCann
,
M. T.
,
Froustey
,
E.
, and
Unser
,
M.
,
2017
, “
Deep Convolutional Neural Network for Inverse Problems in Imaging
,”
IEEE Trans. Image Process.
,
26
(
9
), pp.
4509
4522
.
32.
Liu
,
Y.
,
Billaud
,
Y.
,
Saury
,
D.
, and
Lemonnier
,
D.
,
2020
, “
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using an Artificial Neural Network Trained by a 2-D Axisymmetric Direct Model
,”
Numer. Heat Transfer, Part A
,
77
(
10
), pp.
890
912
.
33.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
34.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
.
35.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
36.
Mayhew
,
J. E.
,
Baughn
,
J. W.
, and
Byerley
,
A. R.
,
2003
, “
The Effect of Freestream Turbulence on Film Cooling Adiabatic Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
669
679
.
37.
Wang
,
N.
,
Zhang
,
M.
,
Shiau
,
C.-C.
, and
Han
,
J.-C.
,
2019
, “
Film Cooling Effectiveness From Two Rows of Compound Angled Cylindrical Holes Using Pressure-Sensitive Paint Technique
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
4
), p.
042202
.
38.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
39.
Ames
,
F. E.
,
1998
, “
Aspects of Vane Film Cooling With High Turbulence: Part I—Heat Transfer
,”
ASME J. Turbomach.
,
120
(
4
), pp.
768
776
.
40.
Chen
,
A. F.
,
Li
,
S.-J.
, and
Han
,
J.-C.
,
2015
, “
Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique
,”
J. Thermophys. Heat Transfer
,
29
(
4
), pp.
775
784
.
41.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
216
.
42.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R. B.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Mode
,”
Turbulence, Heat Mass Transfer
,
4
(
1
), pp.
625
632
.
43.
Dosovitskiy
,
A.
,
Springenberg
,
J. T.
, and
Brox
,
T.
, “
Learning to Generate Chairs With Convolutional Neural Networks
,”
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
IEEE Computer Society
, pp.
1538
1546
.
44.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2014
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,” arXiv preprint arXiv:1409.1556.
45.
Zhao
,
H.
,
Gallo
,
O.
,
Frosio
,
I.
, and
Kautz
,
J.
,
2017
, “
Loss Functions for Image Restoration With Neural Networks
,”
IEEE Trans. Comput. Imaging
,
3
(
1
), pp.
47
57
.
46.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
47.
Elman
,
J. L.
,
1993
, “
Learning and Development in Neural Networks: The Importance of Starting Small
,”
Cognition
,
48
(
1
), pp.
71
99
.
48.
Zhang
,
Y.
,
Sung
,
W. J.
, and
Mavris
,
D.
, “
Application of Convolutional Neural Network to Predict Airfoil Lift Coefficient
,”
Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Paper No. AIAA 2018-1903.
49.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” arXiv preprint arXiv:1412.6980.
50.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
, “
Delving Deep Into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
,”
Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV)
, pp.
1026
1034
.
You do not currently have access to this content.