Abstract

This article conducts numerical investigation coupled with Reynolds-averaged Navier–Stokes method on detailed flow field and heat transfer characteristics of ribbed channel with symmetric ribs mounted on two walls. The physical domain is modeled by reference to a practical turbine blade internal cooling channel. The effects of three selected geometric factors of ribs, i.e., rib inclination angle, dimensionless rib height, and dimensionless rib pitch, on the flow and heat transfer are investigated by variable-controlled simulations with the Reynolds number ranges from 5000 to 90,000. The parameter ranges are 30 deg ≤ α ≤ 90 deg, 0.5 ≤ e/w ≤ 1.5, and 5 ≤ P/w ≤ 15 with the rib width w fixed at 1 mm. It is newly found that the friction factor does not follow a monotonical trend with respect to the Reynolds number under certain rib configurations. In addition, three-level numerical calculations about three geometric factors as well as the Reynolds number are conducted with the response surface method (RSM). Quadratic regression model for the targeted response, thermal performance factor (TPF), is obtained. The optimal rib shape for the goal of maximizing the channel overall thermal performance turns out to be e/w = 0.5, P/w = 15, and α = 30 deg as Re is fixed at 30,000.

References

1.
Liou
,
T. M.
, and
Hwang
,
J. J.
,
1992
, “
Developing Heat Transfer and Friction in a Ribbed Rectangular Duct With Flow Separation at Inlet
,”
ASME J. Heat Transfer-Trans. ASME
,
114
(
3
), pp.
565
573
.
2.
Liou
,
T. M.
, and
Wang
,
W. B.
,
1995
, “
Laser Holographic Interferometry Study of Developing Heat Transfer in a Duct With a Detached rib Array
,”
Int. J. Heat Mass Transfer
,
38
(
1
), pp.
91
100
.
3.
Sato
,
H.
,
Hishida
,
K.
, and
Maeda
,
M.
,
1992
, “
Characteristics of Turbulent Flow and Heat Transfer in a Rectangular Channel With Repeated rib Roughness
,”
Experimental Heat Transfer
,
5
(
1
), pp.
1
16
.
4.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
(
3
), pp.
628
635
.
5.
Huang
,
R. F.
,
Chang
,
S. W.
, and
Chen
,
K. H.
,
2007
, “
Flow and Heat Transfer Characteristics in Rectangular Channels With Staggered Transverse Ribs on Two Opposite Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
12
), pp.
1732
1736
.
6.
Tanda
,
G.
,
2011
, “
Effect of rib Spacing on Heat Transfer and Friction in a Rectangular Channel With 45 deg Angled Rib Turbulators on One/Two Walls
,”
Int. J. Heat Mass Transfer
,
54
(
5
), pp.
1081
1090
.
7.
Rallabandi
,
A.
,
Yang
,
H.
, and
Han
,
J. C.
,
2009
, “
Heat Transfer and Pressure Drop Correlations for Square Channels With 45 Deg Ribs at High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
7
), p.
071703
.
8.
Kim
,
K. Y.
, and
Kim
,
S. S.
,
2002
, “
Shape Optimization of Rib-Roughened Surface to Enhance Turbulent Heat Transfer
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2719
2727
.
9.
Kim
,
H. M.
, and
Kim
,
K. Y.
,
2004
, “
Design Optimization of Rib-Roughened Channel to Enhance Turbulent Heat Transfer
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5159
5168
.
10.
Ramgadia
,
A.
, and
Saha
,
A.
,
2012
, “
Large Eddy Simulation of Turbulent Flow and Heat Transfer in a Ribbed Coolant Passage
,”
J. Appl. Math.
,
2012
, pp.
1
21
.
11.
Murata
,
A.
, and
Mochizuki
,
S.
,
2003
, “
Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct With Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
46
(
16
), pp.
3119
3133
.
12.
Salvagni
,
A.
,
Borello
,
D.
,
Rispoli
,
F.
, and
Hanjalić
,
K.
,
2017
, “
Large-Eddy Simulations of Heat Transfer in Asymmetric Rib-Roughened Ducts: Effects of Rotation
,”
Int. J. Heat Fluid Flow
,
68
, pp.
373
385
.
13.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1992
, “
High Performance Heat Transfer Ducts With Parallel Broken and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
513
523
.
14.
Jia
,
R.
,
Sundén
,
B.
, and
Faghri
,
M.
,
2005
, “
Computational Analysis of Heat Transfer Enhancement in Square Ducts With V-Shaped Ribs: Turbine Blade Cooling
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
425
433
.
15.
Hwang
,
J. J.
,
1998
, “
Heat Transfer-Friction Characteristic Comparison in Rectangular Ducts With Slit and Solid Ribs Mounted on One Wall
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
3
), pp.
709
716
.
16.
Zheng
,
D.
,
Wang
,
X.
, and
Yuan
,
Q.
,
2019
, “
Numerical Investigation on the Flow and Heat Transfer Characteristics in a Rectangular Channel With V-Shaped Slit Ribs
,”
Infrared Phys. Technol.
,
101
, pp.
56
67
.
17.
Alfarawi
,
S.
,
Abdel-Moneim
,
S. A.
, and
Bodalal
,
A.
,
2017
, “
Experimental Investigations of Heat Transfer Enhancement From Rectangular Duct Roughened by Hybrid Ribs
,”
Int. J. Therm. Sci.
,
118
, pp.
123
138
.
18.
Singh
,
P.
,
Ji
,
Y.
, and
Ekkad
,
S. V.
,
2018
, “
Experimental and Numerical Investigation of Heat and Fluid Flow in a Square Duct Featuring Criss-Cross Rib Patterns
,”
Appl. Therm. Eng.
,
128
, pp.
415
425
.
19.
Xie
,
G.
,
Li
,
S.
,
Zhang
,
W.
, and
Sunden
,
B.
,
2013
, “
Computational Fluid Dynamics Modeling Flow Field and Side-Wall Heat Transfer in Rectangular Rib-Roughened Passages
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p. 042001.
20.
Xie
,
G.
,
Liu
,
J.
,
Ligrani
,
P. M.
, and
Sunden
,
B.
,
2014
, “
Flow Structure and Heat Transfer in a Square Passage With Offset Mid-Truncated Ribs
,”
Int. J. Heat Mass Transfer
,
71
, pp.
44
56
.
21.
Liou
,
T. M.
,
Chang
,
S. W.
,
Hung
,
J. H.
, and
Chiou
,
S. F.
,
2007
, “
High Rotation Number Heat Transfer of a 45° Rib-Roughened Rectangular Duct With Two Channel Orientations
,”
Int. J. Heat Mass Transfer
,
50
(
19
), pp.
4063
4078
.
22.
Yang
,
W.
,
Xue
,
S.
,
He
,
Y.
, and
Li
,
W.
,
2017
, “
Experimental Study on the Heat Transfer Characteristics of High Blockage Ribs Channel
,”
Exp. Therm. Fluid Sci.
,
83
, pp.
248
259
.
23.
SriHarsha
,
V.
,
Prabhu
,
S. V.
, and
Vedula
,
R. P.
,
2009
, “
Influence of Rib Height on the Local Heat Transfer Distribution and Pressure Drop in a Square Channel With 90° Continuous and 60° V-Broken Ribs
,”
Appl. Therm. Eng.
,
29
(
11
), pp.
2444
2459
.
24.
Lu
,
B.
, and
Jiang
,
P. X.
,
2006
, “
Experimental and Numerical Investigation of Convection Heat Transfer in a Rectangular Channel With Angled Ribs
,”
Exp. Therm. Fluid Sci.
,
30
(
6
), pp.
513
521
.
25.
Kaewchoothong
,
N.
,
Maliwan
,
K.
,
Takeishi
,
K.
, and
Nuntadusit
,
C.
,
2017
, “
Effect of Inclined Ribs on Heat Transfer Coefficient in Stationary Square Channel
,”
Theor. Appl. Mech. Lett.
,
7
(
6
), pp.
344
350
.
26.
Taslim
,
M. E.
, and
Wadsworth
,
C. M.
,
1997
, “
An Experimental Investigation of the Rib Surface-Averaged Heat Transfer Coefficient in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
,
119
(
2
), pp.
381
389
.
27.
Platzer
,
K. H.
,
Hirsch
,
C.
,
Metzger
,
D. E.
, and
Wittig
,
S.
,
1992
, “
Computer-Based Areal Surface Temperature and Local Heat Transfer Measurements With Thermochromic Liquid Crystals (TLC)
,”
Exp. Fluids
,
13
(
1
), pp.
26
32
.
28.
Ireland
,
P. T.
,
Neely
,
A. J.
,
Gillespie
,
D. R. H.
, and
Robertson
,
A. J.
,
1999
, “
Turbulent Heat Transfer Measurements Using Liquid Crystals
,”
Int. J. Heat Fluid Flow
,
20
(
4
), pp.
355
367
.
29.
Bu
,
S.
,
Yang
,
Z.
,
Zhang
,
W.
,
Liu
,
H.
, and
Sun
,
H.
,
2016
, “
Research on the Thermal Performance of Matrix Cooling Channel With Response Surface Methodology
,”
Appl. Therm. Eng.
,
109
(Part A)
, pp.
75
86
.
30.
Dhopade
,
P.
,
Capone
,
L.
,
McGilvray
,
M.
,
Gillespie
,
D.
, and
Ireland
,
P.
,
2015
, “
Numerical Modelling Techniques for Turbine Blade Internal Cooling Passages
,”
Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Expositio
n, ASME Paper No. GT- 2015-42393.
31.
Myers
,
R. H.
,
2017
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley Press
,
Hoboken, NJ
.
32.
Gneilinski
,
V.
,
1976
, “
New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. J. Chem. Eng.
,
16
(
2
), pp.
359
368
.
33.
Oertel
,
H.
,
2010
,
Prandtl-Essentials of Fluid Mechanics
,
Springer
,
New York
, Convective Heat and Mass Transfer.
You do not currently have access to this content.