Abstract

Rotating significantly alters the internal cooling of turbine rotor blades by induced Coriolis force and buoyancy force, whose effects are characterized by the nondimensional rotation number (Ro) and buoyancy parameter (Bo). The present work was carried out in a new experimental rig of rotor blade internal cooling to obtain detailed heat transfer distributions when the three nondimensional criterion numbers (i.e., Re, Ro, and Bo) are similar to aero-engine operating conditions. Smooth and ribbed two-pass internal cooling channels with a 180-deg tip turn are investigated. The hydraulic diameter is 25.4 mm (1 in.), and the aspect ratio is 2:1. The Reynolds number is fixed at 25,000, with the maximum Ro and Bo of 0.316 and 0.272, respectively. The steady-state thermochromic liquid crystal (TLC) technique is used to measure detailed heat transfer distributions in the channel. Steady-state RANS simulations are also employed to resolve the flow characteristics. The effects of rotation on the flow and heat transfer characteristics are studied in this paper. The results show effects of rotation on the heat transfer distribution present apparent spatial discrepancy, especially around the bend region. The significant difference in the influence of rotation is witnessed in the smooth and the ribbed channels.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
New York
.
2.
Han
,
J.-C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
113011
.
3.
Han
,
J. C.
, and
Huh
,
M.
,
2010
, “
Recent Studies in Turbine Blade Internal Cooling
,”
Heat Transf. Res.
,
41
(
8
), pp.
803
828
.
4.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
5.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1991
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
42
51
.
6.
Rallabandi
,
A.
,
Lei
,
J.
,
Han
,
J.-C.
,
Azad
,
S.
, and
Lee
,
C.-P.
,
2014
, “
Heat Transfer Measurements in Rotating Blade–Shape Serpentine Coolant Passage With Ribbed Walls at High Reynolds Numbers
,”
ASME J. Turbomach.
,
136
(
9
), p.
091004
.
7.
Wu
,
X.
,
Tao
,
Z.
,
Qiu
,
L.
,
Tian
,
S.
, and
Li
,
Y.
,
2014
, “
Friction and Heat Transfer in a Rotating Rib-Roughened Square U-Duct Under High Rotation Numbers
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
, ASME Paper No. 2014-26663.
8.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1993
, “
Heat Transfer in Rotating Serpentine Passages With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
93
(
4
), pp.
738
744
.
9.
Di Sante
,
A.
,
Theunissen
,
R.
, and
Van den Braembussche
,
R. A.
,
2008
, “
A New Facility for Time-Resolved Piv Measurements in Rotating Channels
,”
Exp. Fluids
,
44
(
2
), pp.
179
188
.
10.
Wei
,
K.
,
Tao
,
Z.
,
Deng
,
H.
, and
You
,
R.
, “
Interaction of Secondary Flow With Developing, Turbulent Boundary Layers in a Rotating Duct
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
, ASME Paper No. GT2015-42828.
11.
Pagnacco
,
F.
,
Furlani
,
L.
,
Armellini
,
A.
,
Casarsa
,
L.
, and
Davis
,
A.
,
2016
, “
Rotating Heat Transfer Measurements on a Multi-Pass Internal Cooling Channel—I Rig Development
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2016-56307.
12.
Xu
,
G.
,
Li
,
Y.
,
Deng
,
H.
,
Li
,
H.
, and
Yu
,
X.
,
2015
, “
The Application of Similarity Theory for Heat Transfer Investigation in Rotational Internal Cooling Channel
,”
Int. J. Heat Mass Transfer
,
85
(
1
), pp.
98
109
.
13.
Abdullah
,
N.
,
Abu Talib
,
A. R.
,
Jaafar
,
A. A.
,
Salleh
,
M. A. M.
, and
Chong
,
W. T.
,
2010
, “
The Basics and Issues of Thermochromic Liquid Crystal Calibrations
,”
Exp. Therm. Fluid. Sci.
,
34
(
8
), pp.
1089
1121
.
14.
Wiberg
,
R.
, and
Lior
,
N.
,
2004
, “
Errors in Thermochromic Liquid Crystal Thermometry
,”
Rev. Sci. Instrum.
,
75
(
9
), pp.
2985
2994
.
15.
Rao
,
Y.
,
Zang
,
S.
, and
Wan
,
C.
,
2010
, “
Effect of Coating Thickness on the Calibration and Measurement Uncertainty of a Wide-Band Liquid Crystal Thermography
,”
Chin. Opt. Lett.
,
8
(
4
), pp.
395
397
.
16.
Bakrania
,
S.
, and
Anderson
,
A. M.
,
2002
, “
A Transient Technique for Calibrating Thermochromic Liquid Crystals: The Effects of Surface Preparation, Lighting and Overheat
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, ASME Paper No. IMECE2002-33092.
17.
Coletti
,
F.
,
2010
, “
Coupled Flow Field and Heat Transfer in an Advanced Internal Cooling Scheme
,”
Dissertation
,
Universität Stuttgart
,
Germany
.
18.
Batchelder
,
K. A.
,
1997
,
Towards a Method for Measuring Heat Transfer in Complex 3-D Flows
,
Stanford University
,
Stanford, CA
.
19.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
20.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (Ar = 2: 1) Two-Pass Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021001
.
21.
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (Ar = 4: 1) With Angled Ribs
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
378
387
.
22.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in a Two-Pass Rectangular Channel (AR = 1:4) Under High Rotation Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
8
), p.
081701
.
23.
Kays
,
W. M.
,
2012
,
Convective Heat and Mass Transfer
,
Tata McGraw-Hill Education
,
New York
.
24.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2006
, “
Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45degree Ribbed Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
11
), pp.
1130
1141
.
25.
Ansys® CFX Release 20.0
, ANSYS Documentation, CFX, Modeling Guide, Turbulence and Near-Wall Modeling, Turbulence Models, ANSYS, Inc.
26.
Bredberg
,
J.
,
2002
, “
Turbulence Modelling for Internal Cooling of Gas-Turbine Blades
,”
Dissertation
,
Chalmers University of Technology
,
Göteborg, Sweden
.
27.
Chen
,
H. C.
, and
Han
,
J. C.
,
2002
, “
Computation of Flow and Heat Transfer in Turbine Blade Cooling Passages by Reynolds Stress Turbulence Model (Keynote Paper)
,”
Proceedings of the Fluids Engineering Division Summer Meeting
,
Montreal, Quebec, Canada
,
July 14–18
.
28.
Lei
,
J.
,
Su
,
P.
,
Xie
,
G.
, and
Lorenzini
,
G.
,
2016
, “
The Effect of a Hub Turning Vane on Turbulent Flow and Heat Transfer in a Four-Pass Channel at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
92
, pp.
578
588
.
29.
Murata
,
A.
, and
Mochizuki
,
S.
,
2004
, “
Large Eddy Simulation of Turbulent Heat Transfer in a Rotating Two-Pass Smooth Square Channel With Sharp 180 Turns
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
683
698
.
You do not currently have access to this content.