Abstract

Transitional boundary layers on low-pressure turbines (LPTs) are prone to separation on the suction surface of the blade under strong local adverse pressure gradients. Intermittent freestream turbulence, periodic wakes shed by the upstream blades, and surface roughness due to in-service degradation of the blades are shown to suppress the separation. Although this generally leads to a profile loss reduction, some of the benefits are offset by a loss increase associated with an increased turbulent wetted area. In this work, we explore a strategy where the losses in both the transitional and turbulent boundary layers can be reduced. In particular, we employ surface roughness in the transitional regime to reduce the separation bubble-related losses and riblets in the turbulent regime to further reduce the losses due to the turbulent wetted area. The efficacy of this ‘rough-riblet blade surface’ is studied using high-fidelity eddy resolving simulations on the configuration of a flat surface subjected to streamwise varying pressure gradients. Two riblet shapes, sawtooth and scalloped, are considered. When compared to the roughness alone configuration, scalloped riblets reduced the skin friction drag by ≈10% and are much more effective than the sawtooth riblets. Through the streamwise evolution of the boundary layer parameters such as trailing edge momentum thickness, maximum turbulent kinetic energy, and Reynolds stresses, the additional losses incurred at the junction between the smooth wall and riblet leading edge are highlighted.

References

1.
LaGraff
,
J.
, and
Ashpis
,
D.
,
1998
, “
Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines
,” NASA Contractor Report, Aug., pp.
20
23
.
2.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
71
98
.
3.
Banieghbal
,
M.
,
Curtis
,
E.
,
Denton
,
J.
,
Hodson
,
H.
,
Huntsman
,
I.
,
Schulte
,
V.
, and
Harvey
,
N.
,
1995
, “
Wake Passing in LP Turbine Blades
,”
AGARD Conference on Loss Mechanisms and Unsteady Flows in Turbomachines
,
Derby, UK
,
May
.
4.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
5.
Rao
,
V. N.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
, and
Coull
,
J.
,
2013
, “
Large Eddy Simulations in Low-Pressure Turbines: Effect of Wakes at Elevated Free-Stream Turbulence
,”
Int. J. Heat Fluid Flow
,
43
, pp.
85
95
.
6.
Opoka
,
M. M.
, and
Hodson
,
H. P.
,
2008
, “
Transition on the T106 LP Turbine Blade in the Presence of Moving Upstream Wakes and Downstream Potential Fields
,”
ASME J. Turbomach.
,
130
(
4
), p.
041017
.
7.
Vera
,
M.
,
Hodson
,
H.
, and
Vazquez
,
R.
,
2005
, “
The Effects of a Trip Wire and Unsteadiness on a High-Speed Highly Loaded Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
127
(
4
), pp.
747
754
.
8.
Montomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
,
2010
, “
Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), p.
031018
.
9.
Nagabhushana Rao
,
V.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
, and
Coull
,
J.
,
2013
, “
Investigation of Wake Induced Transition in Low-Pressure Turbines Using Large Eddy Simulation
,”
Turbo Expo: Power for Land, Sea, and Air
,
San Antonio, TX
,
June 3–7
, Vol. 55249, American Society of Mechanical Engineers, p. V06CT42A008.
10.
Bechert
,
D.
,
Bruse
,
M.
,
Hage
,
W. v.
,
Van der Hoeven
,
J. T.
, and
Hoppe
,
G.
,
1997
, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry
,”
J. Fluid Mech.
,
338
, pp.
59
87
.
11.
Strand
,
J. S.
, and
Goldstein
,
D. B.
,
2011
, “
Direct Numerical Simulations of Riblets to Constrain the Growth of Turbulent Spots
,”
J. Fluid Mech.
,
668
, pp.
267
292
.
12.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1993
, “
Direct Numerical Simulation of Turbulent Flow Over Riblets
,”
J. Fluid Mech.
,
255
, pp.
503
539
.
13.
Boomsma
,
A.
, and
Sotiropoulos
,
F.
,
2015
, “
Riblet Drag Reduction in Mild Adverse Pressure Gradients: A Numerical Investigation
,”
Int. J. Heat Fluid Flow
,
56
, pp.
251
260
.
14.
Klumpp
,
S.
,
Guldner
,
T.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2010
, “
Riblets in a Turbulent Adverse-Pressure Gradient Boundary Layer
,”
5th Flow Control Conference
, Paper No. AIAA 2010-4706.
15.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2022
, “
Fluid Dynamics of Axial Turbomachinery: Blade-and Stage-Level Simulations and Models
,”
Annu. Rev. Fluid Mech.
,
54
, pp.
255
285
.
16.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
.
17.
Wissink
,
J.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulations of Transitional Flow in Turbomachinery
,”
ASME J. Turbomach.
,
128
(
4
), pp.
668
678
.
18.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.
19.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2019
, “
Direct Numerical Simulation of Transition Control Via Local Dynamic Surface Modification
,”
AIAA J.
,
57
(
8
), pp.
3309
3321
.
20.
Rao
,
V. N.
,
Jefferson-Loveday
,
R.
,
Tucker
,
P. G.
, and
Lardeau
,
S.
,
2014
, “
Large Eddy Simulations in Turbines: Influence of Roughness and Free-Stream Turbulence
,”
Flow Turbulence Combust.
,
92
(
1–2
), pp.
543
561
.
21.
Schlanderer
,
S. C.
,
Weymouth
,
G. D.
, and
Sandberg
,
R. D.
,
2017
, “
The Boundary Data Immersion Method for Compressible Flows With Application to Aeroacoustics
,”
J. Comput. Phys.
,
333
, pp.
440
461
.
22.
Wissink
,
J.
, and
Rodi
,
W.
,
2004
, “DNS of a Laminar Separation Bubble Affected by Free-Stream Disturbances,”
Direct and Large-Eddy Simulation V
,
R.
Friedrich
,
B. J.
Geurts
, and
O.
Métais
, eds., ERCOFTAC Series, Vol.
9
,
Springer
,
Dordrecht
, pp.
213
220
.
23.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Zaki
,
T.
,
2012
, “
Large Eddy Simulation of Transitional Separated Flow Over a Flat Plate and a Compressor Blade
,”
Flow Turbulence Combust.
,
88
(
1–2
), pp.
19
44
.
24.
Gaitonde
,
D. V.
, and
Visbal
,
M. R.
,
2000
, “
Padé-Type Higher-Order Boundary Filters for the Navier–Stokes Equations
,”
AIAA J.
,
38
(
11
), pp.
2103
2112
.
25.
Vera
,
M.
,
Zhang
,
X. F.
,
Hodson
,
H.
, and
Harvey
,
N.
,
2007
, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: High-Speed Validation
,”
ASME J. Turbomach.
,
129
(
2
), pp.
340
347
.
26.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
1999
, “
High-Order-Accurate Methods for Complex Unsteady Subsonic Flows
,”
AIAA J.
,
37
(
10
), pp.
1231
1239
.
27.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
2002
, “
On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes
,”
J. Comput. Phys.
,
181
(
1
), pp.
155
185
.
28.
Vadlamani
,
N. R.
,
Tucker
,
P. G.
, and
Durbin
,
P.
,
2018
, “
Distributed Roughness Effects on Transitional and Turbulent Boundary Layers
,”
Flow Turbulence Combust.
,
100
(
3
), pp.
627
649
.
29.
Vadlamani
,
N. R.
, and
Tucker
,
P. G.
,
2019
, “Eddy Resolving Simulations of Intake Under Crosswinds,”
In Direct and Large-Eddy Simulation XI
,
M.
Salvetti
,
V.
Armenio
,
J.
Fröhlich
,
B.
Geurts
, and
H.
Kuerten
, eds., ERCOFTAC Series, Vol.
25
,
Springer
,
Cham
, pp.
523
529
.
30.
Lin
,
Y.
,
Vadlamani
,
N. R.
,
Savill
,
M.
, and
Tucker
,
P. G.
,
2017
, “
Wall-Resolved Large Eddy Simulation for Aeroengine Aeroacoustic Investigation
,”
Aeronaut. J.
,
121
(
1242
), pp.
1032
1050
.
31.
Park
,
J.
,
Kwon
,
K.
, and
Choi
,
H.
,
1998
, “
Numerical Solutions of Flow Past a Circular Cylinder at Reynolds Numbers Up to 160
,”
KSME Int. J.
,
12
(
6
), pp.
1200
1205
.
32.
MacDonald
,
M.
,
Chan
,
L.
,
Chung
,
D.
,
Hutchins
,
N.
, and
Ooi
,
A.
,
2016
, “
Turbulent Flow Over Transitionally Rough Surfaces With Varying Roughness Densities
,”
J. Fluid Mech.
,
804
, pp.
130
161
.
33.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
1
28
.
34.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
35.
Sivaramakrishnan Malathi
,
A.
,
Nardini
,
M.
,
Vaid
,
A.
,
Vadlamani
,
N. R.
, and
Sandberg
,
R. D.
,
2022
, “
On the Efficacy of Riblets Toward Drag Reduction of Transitional and Turbulent Boundary Layers
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA & Virtual
,
Jan. 3–7
, p.
0472
.
36.
Atzori
,
M.
,
2021
, “
Coherent Structures and Control in Wall-Bounded Turbulent Flows
,” Ph.D. thesis,
KTH Royal Institute of Technology
,
Stockholm
.
37.
Bechert
,
D.
,
Bruse
,
M.
, and
Hage
,
W.
,
2000
, “
Experiments With Three-Dimensional Riblets as an Idealized Model of Shark Skin
,”
Exp. Fluids
,
28
(
5
), pp.
403
412
.
38.
Vadlamani
,
N. R.
,
2014
, “
Numerical Investigation of Separated Flows in Low Pressure Turbines
,” Ph.D. thesis,
University of Cambridge
,
Cambridge
.
39.
Rouhi
,
A.
,
Chung
,
D.
, and
Hutchins
,
N.
,
2019
, “
Direct Numerical Simulation of Open-Channel Flow Over Smooth-to-Rough and Rough-to-Smooth Step Changes
,”
J. Fluid Mech.
,
866
, pp.
450
486
.
40.
Endrikat
,
S.
,
Modesti
,
D.
,
García-Mayoral
,
R.
,
Hutchins
,
N.
, and
Chung
,
D.
,
2021
, “
Influence of Riblet Shapes on the Occurrence of Kelvin–Helmholtz Rollers
,”
J. Fluid Mech.
,
913
, pp.
A37 1
34
.
You do not currently have access to this content.