Abstract

The blade mode shape and acoustic properties are important factors that affect the aeroelasticity of fan blades. The goal of this paper is to investigate the stall flutter mechanism associated with the first mode and its components. The paper numerically studies the impact of blade modes on fan flutter under different acoustic propagation conditions. The research focus includes unsteady characteristics inside blade passages, variations in pressure waves under different acoustic modes, as well as the effects of blade modes on the least stable phase angle. The results show that the twist-induced pressure leads to destabilization. Compared with the work of other authors, this study discovered that when the twist-induced pressure on the pressure side act on the plunge rather than twist, the instability effect will be greater, while the effect of twist-induced pressure on the suction side is weak. The phase of unsteady pressure in two-dimensional flow regions is linear with frequency, while the amplitude is highly sensitive to acoustic properties. The plunge-induced pressure inside the passage undergoes significant changes when downstream from acoustic cut-off to cut-on. The twist-induced pressure is more sensitive to changes in the acoustic propagation state, with the peak of the aerodynamic damping curve near upstream acoustic resonance being solely related to the twist-induced pressure acting on the suction side. The study also finds that the position of the blade torsion axis, represented by the twist-to-plunge ratio, does not affect the most unstable nodal diameter.

References

1.
Lane
,
F.
,
1956
, “
System Mode Shapes in the Flutter of Compressor Blade Rows
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
54
66
.
2.
Carta
,
F. O.
,
1967
, “
Coupled Blade-Disk-Shroud Flutter Instabilities in Turbojet Engine Rotors
,”
ASME J. Eng. Power.
,
89
(
3
), pp.
419
426
.
3.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2011
, “
Mechanisms for Wide-Chord Fan Blade Flutter
,”
ASME J. Turbomach.
,
133
(
4
), p.
041029
.
4.
Vahdati
,
M.
, and
Cumpsty
,
N.
,
2016
, “
Aeroelastic Instability in Transonic Fans
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022604
.
5.
Lee
,
K.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2017
, “
Numerical Study on Aeroelastic Instability for a Low-Speed Fan
,”
ASME J. Turbomach.
,
139
(
7
), p.
071004
.
6.
Vahdati
,
M.
,
Smith
,
N.
, and
Zhao
,
F.
,
2015
, “
Influence of Intake on Fan Blade Flutter
,”
ASME J. Turbomach.
,
137
(
8
), p.
081002
.
7.
Zhao
,
F.
,
Nipkau
,
J.
, and
Vahdati
,
M.
,
2015
, “
A Simple Low-Fidelity Model for Embedded Blade Row Flutter Prediction
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
ASME Paper No. GT2015-42173.
8.
Zhao
,
F.
,
Smith
,
N.
, and
Vahdati
,
M.
,
2017
, “
A Simple Model for Identifying the Flutter Bite of Fan Blades
,”
ASME J. Turbomach.
,
139
(
7
), p.
071003
.
9.
Zhao
,
F.
,
Nipkau
,
J.
, and
Vahdati
,
M.
,
2016
, “
Influence of Acoustic Reflections on Flutter Stability of an Embedded Blade Row
,”
Proc. Inst. Mech. Eng. A J. Power Energy
,
230
(
1
), pp.
29
43
.
10.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Breard
,
C.
, and
Imregun
,
M.
,
2002
, “
Computational Study of Intake Duct Effects on Fan Flutter Stability
,”
AIAA J.
,
40
(
3
), pp.
408
418
.
11.
Dong
,
X.
,
Zhang
,
Y.
,
Lu
,
X.
,
Zhang
,
Y.
, and
Gan
,
J.
,
2022
, “
Numerical Investigation of the Fan Flutter Mechanism Related to Acoustic Propagation Characteristics
,”
ASME J. Turbomach.
,
144
(
10
), p.
101009
.
12.
Zhao
,
F.
,
2018
, “
Impact of Mode Shape and Acoustic Gust on Blade Flutter Stability
,”
Proceedings of 15International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines
,
Oxford, UK
,
Sept. 24–27
,
Paper No. ISUAAAT15-090
.
13.
Vahdati
,
M.
,
Lee
,
K.
, and
Sureshkumar
,
P.
,
2020
, “
A Review of Computational Aeroelasticity of Civil Fan Blades
,”
Int. J. Gas Turbine Propul. Power Syst.
,
11
(
4
), pp.
22
35
.
14.
Corral
,
R.
,
Blando
,
Y.
, and
Pitarch
,
A.
,
2023
, “
Low Reduced Frequency Theory of Airfoils Vibrating in Complex Modes
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041020
.
15.
Waite
,
J. J.
, and
Kielb
,
R. E.
,
2014
, “
Physical Understanding and Sensitivities of Low Pressure Turbine Flutter
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012502
.
16.
Vogt
,
D. M.
, and
Fransson
,
T. H.
,
2006
, “
Experimental Investigation of Mode Shape Sensitivity of an Oscillating Low-Pressure Turbine Cascade at Design and Off-Design Conditions
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
530
541
.
17.
Waite
,
J. J.
, and
Kielb
,
R. E.
,
2016
, “
The Impact of Blade Loading and Unsteady Pressure Bifurcations on Low-Pressure Turbine Flutter Boundaries
,”
ASME J. Turbomach.
,
138
(
4
), p.
041002
.
18.
Eret
,
P.
, and
Tsymbalyuk
,
V.
,
2023
, “
Experimental Subsonic Flutter of a Linear Turbine Blade Cascade With Various Mode Shapes and Chordwise Torsion Axis Locations
,”
ASME J. Turbomach.
,
145
(
6
), p.
061002
.
19.
Sanders
,
A. J.
,
Hassan
,
K. K.
, and
Rabe
,
D. C.
,
2004
, “
Experimental and Numerical Study of Stall Flutter in a Transonic Low-Aspect Ratio Fan Blisk
,”
ASME J. Turbomach.
,
126
(
1
), pp.
166
174
.
20.
Srivastava
,
R.
, and
Keith
,
T. G.
, Jr.
,
2005
, “
Influence of Shock Wave on Turbomachinery Blade Row Flutter
,”
AIAA J. Propuls. Power
,
21
(
1
), pp.
167
174
.
21.
Dong
,
X.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Zhang
,
Z.
, and
Lu
,
X.
,
2020
, “
Numerical Simulations of Flutter Mechanism for High-Speed Wide-Chord Transonic Fan
,”
Aerosp. Sci. Technol.
,
105
, p.
106009
.
22.
Dong
,
X.
,
Zhang
,
Y.
,
Zhang
,
Z.
,
Lu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Effect of Tip Clearance on the Aeroelastic Stability of a Wide-Chord Fan Rotor
,”
ASME J. Eng. Gas Turbines Power
,
142
(
9
), p.
091010
.
23.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
27th Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 9–12
,
AIAA Paper No. 89-0366
.
24.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.
25.
Zhang
,
W.
, and
Vahdati
,
M.
,
2019
, “
A Parametric Study of the Effects of Inlet Distortion on Fan Aerodynamic Stability
,”
ASME J. Turbomach.
,
141
(
1
), p.
011011
.
26.
Möller
,
D.
, and
Schiffer
,
H.
,
2021
, “
On the Mechanism of Spike Stall Inception and Near Stall Nonsynchronous Vibration in an Axial Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021007
.
27.
Kim
,
S.
,
Pullan
,
G.
,
Hall
,
C. A.
,
Grewe
,
R. P.
,
Wilson
,
M. J.
, and
Gunn
,
E.
,
2019
, “
Stall Inception in Low-Pressure Ratio Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071005
.
28.
Chahine
,
C.
,
Verstraete
,
T.
, and
He
,
L.
,
2019
, “
A Comparative Study of Coupled and Decoupled Fan Flutter Prediction Methods Under Variation of Mass Ratio and Blade Stiffness
,”
J. Fluids Struct.
,
85
, pp.
110
125
.
29.
Huang
,
H.
,
Yang
,
M.
, and
Wang
,
D.
,
2022
, “
Uncovering the Root Causes of Stall Flutter in a Wide Chord Fan Blisk
,”
Int. J. Turbomach. Propuls. Power
,
7
(
4
), p.
30
.
30.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,” SAE Technical Paper No. 620532.
31.
Hellmich
,
B.
, and
Seume
,
J. R.
,
2008
, “
Causes of Acoustic Resonance in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
130
(
3
), p.
031003
.
32.
Jia
,
X.
,
Huang
,
H.
, and
Wang
,
D.
,
2021
, “
Effect of Fan Blade Vibration Mode on Flutter Stability
,”
Proceedings of Global Power & Propulsion Society
,
Xi’an, China
,
Apr. 11–13
,
Paper No. GPPS-TC-2021-0182
.
33.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part I: Theoretical Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021004
.
34.
Vega
,
A.
, and
Corral
,
R.
,
2013
, “
Physics of Vibrating Airfoils at Low Reduced Frequency
,” ASME Paper No. GT2013-94906.
You do not currently have access to this content.