Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Endwall contouring and 3D blade configurations are effective techniques for enhancing turbomachinery performance. The integration of these technologies is an important area of investigation. To continue the numerical and experimental validations of the non-axisymmetric endwall contoured cascade (Du et al., 2024, “Endwall Contouring for Improving Aerodynamic Performance in a High-Pressure Turbine Cascade,” ASME J. Turbomach., 146(10), p. 101001), the present study redesigns the cascade via section profiling using optimization methods to maximize performance gains. To improve the control effect of endwall contouring, blade section parameters are strategically adjusted during optimization. The experimental flow field traverses at cascade exits demonstrate the control of the cascade flow field by the optimized design. The redesigned cascade exhibits decreased overturning near the shroud and reduced underturning near the hub, as well as reduced profile loss in the mainstream, compared to the endwall contoured cascade. The modification of section parameters enhances the control of losses and the secondary flow intensity. Computational fluid dynamics is used to provide a detailed analysis of the flow field, providing insights into how flow structures vary when the blade profile is modified. The numerical results further elucidate the effect of blade section profiling on both the performance characteristics of the cascade and the configuration of the secondary flows.

References

1.
Rose
,
M. G.
,
1994
, “
Non-Axisymmetric Endwall Profiling in the HP NGV's of an Axial Flow Gas Turbine
,”
Proceedings of the ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition, Volume 1: Turbomachinery
,
Hague, The Netherlands
,
June 13–16, 1994
,
ASME
, p.
V001T01A090
.
2.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
, and
Rose
,
M. G.
,
1998
, “
Non-Axisymmetric Endwall Profiling in a Turbine Rotor Blade
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, Volume 1: Turbomachinery
,
Stockholm, Sweden
,
June 2–5 1998
,
ASME
, p.
V001T01A130
.
3.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part I – Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
4.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part II – Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.
5.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
,
2003
, “
Improving the Efficiency of the Trent 500-HP Turbine Using Non-Axisymmetric End Walls – Part I: Turbine Design
,”
ASME J. Turbomach.
,
125
(
3
), pp.
497
504
.
6.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls: Part II – Experimental Validation
,”
Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air, Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
New Orleans, LA
,
June 4–7, 2001
,
ASME
, p.
V001T03A081
.
7.
Song
,
L.
,
Guo
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2018
, “
Optimization and Knowledge Discovery of a Three-Dimensional Parameterized Vane With Nonaxisymmetric Endwall
,”
J. Propul. Power
,
34
(
1
), pp.
234
246
.
8.
Casey
,
M. V.
,
1983
, “
A Computational Geometry for the Blades and Internal Flow Channels of Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
105
(
2
), pp.
288
295
.
9.
Zhang
,
M.
, and
He
,
L.
,
2015
, “
Combining Shaping and Flow Control for Aerodynamic Optimization
,”
AIAA J.
,
53
(
4
), pp.
888
901
.
10.
Arnone
,
A.
,
Bonaiuti
,
D.
,
Focacci
,
A.
,
Pacciani
,
R.
,
Scotti Del Greco
,
A.
, and
Spano
,
E.
,
2004
, “
Parametric Optimization of a High-Lift Turbine Vane
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Volume 5: Turbo Expo 2004, Parts A and B
,
Vienna, Austria
,
June 14–17, 2004
,
ASME
, pp.
1469
1479
.
11.
Kulfan
,
B. M.
,
2008
, “
Universal Parametric Geometry Representation Method
,”
J. Aircr.
,
45
(
1
), pp.
142
158
.
12.
Pritchard
,
L. J.
,
1985
, “
An Eleven Parameter Axial Turbine Airfoil Geometry Model
,”
Proceedings of the ASME 1985 International Gas Turbine Conference and Exhibit. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Houston, TX
,
March 1985
,
ASME
, p.
V001T03A058
.
13.
Duan
,
P. H.
, and
He
,
L.
,
2024
, “
Design Optimization of Blade Tip in Subsonic and Transonic Turbine Stages – Part I: Stage Design and Preliminary Tip Optimization
,”
ASME J. Eng. Gas Turbines Power
,
146
(
9
), p.
091001
.
14.
Li
,
L.
,
Zhang
,
W.
,
Li
,
Y.
,
Zhang
,
R.
,
Liu
,
Z.
,
Wang
,
Y.
, and
Mu
,
Y.
,
2024
, “
A Non-Parametric High-Resolution Prediction Method for Turbine Blade Profile Loss Based on Deep Learning
,”
Energy
,
2024
(
288
), p.
129719
.
15.
Nagel
,
M. G.
, and
Baier
,
R.
,
2005
, “
Experimentally Verified Numerical Optimization of a Three-Dimensional Parametrized Turbine Vane With Nonaxisymmetric End Walls
,”
ASME J. Turbomach.
,
127
(
2
), pp.
380
387
.
16.
Bagshaw
,
D. A.
,
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
,
Stokes
,
M. R.
, and
Harvey
,
N. W.
,
2008
, “
The Design of Three-Dimensional Turbine Blades Combined With Profiled Endwalls
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
1
), pp.
93
102
.
17.
Poehler
,
T.
,
Niewoehner
,
J.
,
Jeschke
,
P.
, and
Guendogdu
,
Y.
,
2015
, “
Investigation of Nonaxisymmetric Endwall Contouring and Three-Dimensional Airfoil Design in a 1.5-Stage Axial Turbine – Part I: Design and Novel Numerical Analysis Method
,”
ASME J. Turbomach.
,
137
(
8
), p.
081009
.
18.
Du
,
Z.
,
Cai
,
L.
,
Chen
,
Y.
,
Wang
,
S.
,
Tang
,
H.
, and
Zeng
,
J.
,
2024
, “
Endwall Contouring for Improving Aerodynamic Performance in a High-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
146
(
10
), p.
101001
.
19.
Mee
,
D. J.
,
Baines
,
N. C.
,
Oldfield
,
M. L. G.
, and
Dickens
,
T. E.
,
1992
, “
An Examination of the Contributions to Loss on a Transonic Turbine Blade in Cascade
,”
ASME J. Turbomach.
,
114
(
1
), pp.
155
162
.
20.
Liu
,
P.
,
2021
,
A General Theory of Fluid Mechanics
,
Springer
,
Singapore
, pp.
333
380
.
21.
Treaster
,
A. L.
, and
Yocum
,
A. M.
,
1979
, “
The Calibration and Application of Five-Hole Probes
,”
ISA Trans.
,
18
(
3
), pp.
23
34
.
22.
Chen
,
Y.
,
Jiang
,
D.
,
Du
,
Z.
, and
Wang
,
S.
,
2023
, “
Experimental and Numerical Investigation of High Load Turbine Blade Tip Cavity Structures
,”
ASME J. Turbomach.
,
145
(
6
), p.
061008
.
23.
ANSYS Inc.
,
2011
,
ANSYS CFX 14.0 Solver Theory Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
24.
Wilcox
,
D. C.
,
1988
, “
Multiscale Model for Turbulent Flows
,”
AIAA J.
,
26
(
11
), pp.
1311
1320
.
25.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London (England)
.
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
27.
Yakhot
,
V.
,
Thangam
,
S.
,
Gatski
,
T. B.
,
Orszag
,
S. A.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.
28.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluid. Eng.
,
116
(
3
), pp.
405
413
.
29.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluid. Eng.
,
130
(
7
), p.
078001
.
30.
Rumsey
,
C. L.
, and
Thomas
,
J. L.
,
2008
, “
Application of FUN3D and CFL3D to the Third Workshop on CFD Uncertainty Analysis
,” NASA TM–2008–215537.
31.
Burigana
,
M.
,
Verstraete
,
T.
, and
Lavagnoli
,
S.
,
2023
, “
Turbine Endwall Contouring Through Advanced Optimization Techniques
,”
ASME J. Turbomach.
,
145
(
8
), p.
081011
.
32.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2013
, “
Application of Nonaxisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME J. Turbomach.
,
135
(
6
), p.
061006
.
33.
Trigg
,
M. A.
,
Tubby
,
G. R.
, and
Sheard
,
A. G.
,
1999
, “
Automatic Genetic Optimization Approach to Two-Dimensional Blade Profile Design for Steam Turbines
,”
ASME J. Turbomach.
,
121
(
1
), pp.
11
17
.
34.
Schittkowski
,
K.
,
2002
,
NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm for Parallel Computing
,
Department of Mathematics, University of Bayreuth
,
Bayreuth, Germany
.
35.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the 2nd Studying Turbulence Using Numerical Simulation Databases
,
Stanford, CA
,
Dec. 1
, pp.
193
208
.
36.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
37.
Miki
,
K.
, and
Ameri
,
A.
,
2024
, “
Numerical Investigation of the Effect of Trailing Edge Thickness of Simulated Ceramic Matrix Composite Blades on Loss Profiles
,”
ASME J. Turbomach.
,
146
(
9
), p.
091009
.
You do not currently have access to this content.