Abstract

To solve the turbine design optimization problems efficiently, surrogate-based optimization algorithms are frequently used. To further reduce the cost of turbine design, the multi-fidelity surrogate (MFS)-based optimization is proposed by the researchers, who resort to augmenting the small number of expensive high-fidelity (HF) samples by a large portion of low-fidelity (LF) but cheap samples in surrogate modeling and optimization process. Nonetheless, according to our observations, the MFS-based optimization sometimes can only have better convergence rate at the early stage of optimization process, but yielding worse final solution than the single-fidelity surrogate (SFS)-based optimization that uses high-fidelity samples alone. The reason behind can be explained as follows. With the increase of HF samples in the optimization process, the LF samples can cause negative effect and therefore misleading the optimization search. To address the above issue, an ensemble weighted multi-fidelity surrogate (EMFS) is proposed. Specifically, the density-based spatial clustering of applications with noise is used to detect the region where the MFS cannot build a more accurate surrogate, and a local SFS is built there. Then, an EMFS is built by combining the MFS and SFS with adaptive weights, which is used to guide the optimization process. The related algorithm is named as multi- and single-fidelity surrogate fused optimization (MSFO). Through tests on GE-E3 blade optimization and the film cooling layout design of a turbine endwall, the effectiveness of proposed MSFO is well demonstrated.

References

1.
Song
,
L.
,
Guo
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Research on Metamodel-Based Global Design Optimization and Data Mining Methods
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092604
.
2.
Ruan
,
X.
,
Jiang
,
P.
,
Zhou
,
Q.
,
Hu
,
J.
, and
Shu
,
L.
,
2020
, “
Variable-Fidelity Probability of Improvement Method for Efficient Global Optimization of Expensive Black-box Problems
,”
Struct. Multidiscipl. Optim.
,
62
, pp.
3021
3052
.
3.
Adjei
,
R. A.
,
Fan
,
C.
,
Wang
,
W.
, and
Liu
,
Y.
,
2021
, “
Multidisciplinary Design Optimization for Performance Improvement of an Axial Flow Fan Using Free-Form Deformation
,”
ASME J. Turbomach.
,
143
(
1
), p.
011003
.
4.
Johnson
,
J. J.
,
King
,
P. I.
,
Clark
,
J. P.
, and
Ooten
,
M. K.
,
2014
, “
Genetic Algorithm Optimization of a High-Pressure Turbine Vane Pressure Side Film Cooling Array
,”
ASME J. Turbomach.
,
136
(
1
), p.
011011
.
5.
Song
,
L.
,
Guo
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2018
, “
Optimization and Knowledge Discovery of a Three-Dimensional Parameterized Vane With Nonaxisymmetric Endwall
,”
J. Propul. Power
,
34
(
1
), pp.
234
246
.
6.
Persico
,
G.
,
Rodriguez-Fernandez
,
P.
, and
Romei
,
A.
,
2019
, “
High-Fidelity Shape Optimization of Non-Conventional Turbomachinery by Surrogate Evolutionary Strategies
,”
ASME J. Turbomach.
,
141
(
8
), p.
081010
.
7.
Joly
,
M.
,
Sarkar
,
S.
, and
Mehta
,
D.
,
2019
, “
Machine Learning Enabled Adaptive Optimization of a Transonic Compressor Rotor With Precompression
,”
ASME J. Turbomach.
,
141
(
5
), p.
051011
.
8.
Lopez
,
D. I.
,
Ghisu
,
T.
, and
Shahpar
,
S.
,
2022
, “
Global Optimization of a Transonic Fan Blade Through AI-Enabled Active Subspaces
,”
ASME J. Turbomach.
,
144
(
1
), p.
011013
.
9.
Babaee
,
H.
,
Acharya
,
S.
, and
Wan
,
X.
,
2014
, “
Optimization of Forcing Parameters of Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
136
(
6
), p.
061016
.
10.
Forrester
,
A. I.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
11.
Liu
,
H.
,
Ong
,
Y.-S.
, and
Cai
,
J.
,
2017
, “
A Survey of Adaptive Sampling for Global Metamodeling in Support of Simulation-Based Complex Engineering Design
,”
Struct. Multidiscipl. Optim.
,
57
(
1
), pp.
393
416
.
12.
Liu
,
Y.
,
Li
,
K.
,
Wang
,
S.
,
Cui
,
P.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
A Sequential Sampling Generation Method for Multi-fidelity Model Based on Voronoi Region and Sample Density
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121702
.
13.
Jones
,
D. R.
, and
Schonlau
,
M.
, “
Efficient Global Optimization of Expensive Black-Box Functions
,” p.
38
.
14.
Baert
,
L.
,
Chérière
,
E.
,
Sainvitu
,
C.
,
Lepot
,
I.
,
Nouvellon
,
A.
, and
Leonardon
,
V.
,
2020
, “
Aerodynamic Optimization of the Low-Pressure Turbine Module: Exploiting Surrogate Models in a High-Dimensional Design Space
,”
ASME J. Turbomach.
,
142
(
3
), p.
031005
.
15.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2017
, “
Remarks on Multi-fidelity Surrogates
,”
Struct. Multidiscipl. Optim.
,
55
(
3
), pp.
1029
1050
.
16.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Gary Wang
,
G.
,
2020
, “
Multi-fidelity Modeling and Adaptive Co-Kriging-Based Optimization for All-Electric Geostationary Orbit Satellite Systems
,”
ASME J. Mech. Des.
,
142
(
2
), p.
021404
.
17.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
.
18.
Makkar
,
G.
,
Smith
,
C.
,
Drakoulas
,
G.
,
Kopsaftopoulos
,
F.
, and
Gandhi
,
F.
,
2022
, ”
A Machine Learning Framework for Physics-Based Multi-fidelity Modeling and Health Monitoring for a Composite Wing
,” Volume 1: Acoustics, Vibration, and Phononics, American Society of Mechanical Engineers, p.
V001T01A008
.
19.
Han
,
Z.-H.
, and
Görtz
,
S.
,
2012
, “
Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
9
), pp.
1885
1896
.
20.
Bu
,
H.
,
Yang
,
Y.
,
Song
,
L.
, and
Li
,
J.
,
2022
, “
Improving the Film Cooling Performance of a Turbine Endwall With Multi-fidelity Modeling Considering Conjugate Heat Transfer
,”
ASME J. Turbomach.
,
144
(
1
), p.
011011
.
21.
Kim
,
Y.
,
Lee
,
S.
,
Yee
,
K.
, and
Rhee
,
D.-H.
,
2018
, “
High-to-Low Initial Sample Ratio of Hierarchical Kriging for Film Hole Array Optimization
,”
J. Propul. Power
,
34
(
1
), pp.
108
115
.
22.
Zhang
,
H.
,
Li
,
Y.
,
Chen
,
Z.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Multi-Fidelity Model Based Optimization of Shaped Film Cooling Hole and Experimental Validation
,”
Int. J. Heat Mass Transfer
,
132
, pp.
118
129
.
23.
Lin
,
Q.
,
Zhou
,
Q.
,
Hu
,
J.
,
Cheng
,
Y.
, and
Hu
,
Z.
,
2022
, “
A Sequential Sampling Approach for Multi-fidelity Surrogate Modeling-Based Robust Design Optimization
,”
ASME J. Mech. Des.
,
144
(
11
), p.
111703
.
24.
Guo
,
Z.
,
Liu
,
H.
,
Ong
,
Y.-S.
,
Qu
,
X.
,
Zhang
,
Y.
, and
Zheng
,
J.
,
2022
, “
Generative Multiform Bayesian Optimization
,”
IEEE Trans. Cybernet.
,
53
(
7
), pp.
4347
4360
.
25.
Wang
,
Q.
,
Song
,
L.
,
Guo
,
Z.
, and
Li
,
J.
,
2020
, ”
Transfer Optimization in Accelerating the Design of Turbomachinery Cascades
,”
Proceedings of ASME Turbo Expo 2020 Turbomachinery Technical Conference and Exposition.Volume 2D: Turbomachinery
,
Virtual, Online
,
Sept. 21–25
, ASME, p. V02DT38A031, p.
12
.
26.
Guo
,
Z.
,
Song
,
L.
,
Park
,
C.
,
Li
,
J.
, and
Haftka
,
R. T.
,
2018
, “
Analysis of Dataset Selection for Multi-fidelity Surrogates for a Turbine Problem
,”
Struct. Multidiscipl. Optim.
,
57
(
6
), pp.
2127
2142
.
27.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2018
, “
Low-fidelity Scale Factor Improves Bayesian Multi-fidelity Prediction by Reducing Bumpiness of Discrepancy Function
,”
Struct. Multidiscipl. Optim.
,
58
(
2
), pp.
399
414
.
28.
Shu
,
L.
,
Jiang
,
P.
,
Song
,
X.
, and
Zhou
,
Q.
,
2019
, “
Novel Approach for Selecting Low-Fidelity Scale Factor in Multi-fidelity Metamodeling
,”
AIAA J.
,
57
(
12
), pp.
5320
5330
.
29.
Zhou
,
Q.
,
Wu
,
Y.
,
Guo
,
Z.
,
Hu
,
J.
, and
Jin
,
P.
,
2020
, “
A Generalized Hierarchical Co-Kriging Model for Multi-fidelity Data Fusion
,”
Struct. Multidiscipl. Optim.
,
62
, pp.
1885
1904
.
30.
Bu
,
H.
,
Song
,
L.
,
Guo
,
Z.
, and
Li
,
J.
,
2022
, “
Selecting Scale Factor of Bayesian Multi-fidelity Surrogate by Minimizing Posterior Variance
,”
Chin. J. Aeronaut.
,
35
(
11
), pp.
59
73
.
31.
Alizadeh
,
R.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2020
, “
Managing Computational Complexity Using Surrogate Models: A Critical Review
,”
Res. Eng. Des.
,
31
(
3
), pp.
275
298
.
32.
Jones
,
D. R.
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,” p.
39
.
33.
Schubert
,
E.
,
Sander
,
J.
,
Ester
,
M.
,
Kriegel
,
H. P.
, and
Xu
,
X.
,
2017
, “
DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN
,”
ACM Trans. Database Syst.
,
42
(
3
), pp.
1
21
.
34.
Zhang
,
Y.
,
Han
,
Z.-H.
, and
Zhang
,
K.-S.
,
2018
, “
Variable-Fidelity Expected Improvement Method for Efficient Global Optimization of Expensive Functions
,”
Struct. Multidiscipl. Optim.
,
58
(
4
), pp.
1431
1451
.
35.
Pritchard
,
L. J.
,
1985
, ”
An Eleven Parameter Axial Turbine Airfoil Geometry Model
,” Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery,
American Society of Mechanical Engineers
, p.
V001T03A058
.
36.
Agromayor
,
R.
,
Anand
,
N.
,
Müller
,
J.-D.
,
Pini
,
M.
, and
Nord
,
L. O.
,
2021
, “
A Unified Geometry Parametrization Method for Turbomachinery Blades
,”
Comput. Aided Des.
,
133
, p.
102987
.
37.
Mensch
,
A. E.
, and
Thole
,
K. A.
,
2016
, “
Effects of Non-Axisymmetric Endwall Contouring and Film Cooling on the Passage Flowfield in a Linear Turbine Cascade
,”
Exp. Fluid.
,
57
(
1
), p.
1
.
38.
Young
,
J. B.
, and
Horlock
,
J. H.
,
2006
, “
Defining The Efficiency of a Cooled Turbine
,”
ASME J. Turbomach.
,
128
(
4
), pp.
658
667
.
You do not currently have access to this content.