Abstract

The flow and heat transfer within compressor rotor cavities of aero-engines is a conjugate problem. The operating conditions buoyancy forces, caused by radial temperature difference between the cold throughflow and the hotter shroud, can influence the amount of entrained air significantly. By this, the heat transfer depends on the radial temperature gradient of the cavity walls, and in turn, the disk temperatures are dependent on the heat transfer. In this article, disk Nusselt numbers are calculated in reference to the air inlet temperature and in comparison to a modeled local air temperature inside the cavity. The local disk heat flux is determined from measured steady-state surface temperatures by solving the inverse heat transfer problem in an iterative procedure. The conduction equation is solved on a 2D mesh using a validated finite element approach, and the heat flux confidence intervals are calculated with a stratified Monte Carlo approach. An estimate for the amount of air entering into the cavity is calculated by a simplified heat balance. The major influences on the Nusselt number were found to be the mass flowrate entering the cavity and the density of the fluid inside the cavity.

References

1.
Farthing
,
P.
,
Long
,
C.
,
Owen
,
J.
, and
Pincombe
,
J.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.
2.
Farthing
,
P.
,
Long
,
C.
,
Owen
,
J.
, and
Pincombe
,
J.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Heat Transfer
,”
ASME J. Turbomach.
,
114
(
1
), pp.
229
236
.
3.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2014
, “
The Effects of Rotation and Mass Flow on Local Heat Transfer in Rotating Cavities With Axial Throughflow
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 45738
,
Cologne, Germany
,
June 16–20
, American Society of Mechanical Engineers, p. V05CT16A026.
4.
Long
,
C.
,
1994
, “
Disk Heat Transfer in a Rotating Cavity With an Axial Throughflow of Cooling Air
,”
Int. J. Heat Fluid Flow
,
15
(
4
), pp.
307
316
.
5.
Alexiou
,
A.
,
Hills
,
N.
,
Long
,
C.
,
Turner
,
A.
, and
Millward
,
J.
,
2000
, “
Heat Transfer in High-Pressure Compressor Gas Turbine Internal Air Systems: A Rotating Disc-cone Cavity With Axial Throughflow
,”
Exper. Heat Transfer
,
13
(
4
), pp.
299
328
.
6.
Puttock-Brown
,
M.
, and
Long
,
C.
,
2021
, “
Heat Transfer Analysis in a Rotating Cavity With Axial Through-flow
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051026
.
7.
Ozisik
,
M. N.
, and
Orlande
,
H.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
CRC Press
,
New York
.
8.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Disks
,”
ASME J. Turbomach.
,
137
(
12
), p.
121003
.
9.
Atkins
,
N.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 45738
,,
Cologne, Germany
,
June 16–20
, American Society of Mechanical Engineers, p.
V05CT16A041
.
10.
Jackson
,
R.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O.
,
Scobie
,
J.
,
Sangan
,
C.
,
Owen
,
J.
, and
Lock
,
G.
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.
11.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.
12.
Diemel
,
E.
,
Odenbach
,
S.
,
Uffrecht
,
W.
,
Villazon
,
J.
,
Valencia
,
A.
, and
Reinecke
,
M.
,
2019
, “
High Speed Single Cavity Rig With Axial Throughflow of Cooling Air: Rig Structure and Periphery
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 58653
,
Phoenix, AZ
,
June 17–21
, p.
V05BT15A010
.
13.
Diemel
,
E.
,
Odenbach
,
S.
,
Uffrecht
,
W.
,
Villazon
,
J. R.
,
Valencia
,
A. G.
, and
Porras
,
A. S.
,
2021
, “
High Speed Single Cavity Rig With Axial Throughflow of Cooling Air: Heat Transfer and Fluid Phenomena
,”
14th European Conference on Turbomachinery Fluid dynamics & Thermodynamics
,
Virtual
,
Apr. 12–16
.
14.
Boyer
,
R.
,
Collings
,
E.
, and
Welsch
,
G.
,
1994
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
OH
.
15.
Robert
,
C.
, and
Casella
,
G.
,
2013
,
Monte Carlo Statistical Methods
,
Springer Science & Business Media
,
New York
.
16.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.
17.
Long
,
C.
, and
Tucker
,
P.
,
1994
, “
Shroud Heat Transfer Measurements From a Rotating Cavity With an Axial Throughflow of Air
,”
ASME J. Turbomach.
,
116
(
3
), pp.
525
534
.
18.
Black
,
J. D.
, and
Long
,
C. A.
,
1992
, “
Rotational Coherent Anti-stokes Raman Spectroscopy Measurements in a Rotating Cavity With Axial Throughflow of Cooling Air: Oxygen Concentration Measurements
,”
Appl. Opt.
,
31
(
21
), pp.
4291
4297
.
19.
Bohn
,
D. E.
,
Deutsch
,
G. N.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “
Flow Visualisation in a Rotating Cavity With Axial Throughflow
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 78569
,,
Munich, Germany
,
May 8–11
, p. V003T01A084.
20.
Owen
,
J. M.
,
Abrahamsson
,
H.
, and
Lindblad
,
K.
,
2007
, “
Buoyancy-Induced Flow in Open Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
893
900
.
21.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M.
, and
Button
,
B.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
22.
Owen
,
J.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.
You do not currently have access to this content.