Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Meanline models play a crucial role in turbine design and system-level analyses, facilitating rapid evaluation of design concepts and prediction of off-design performance. Most of the existing meanline methods are inadequate in predicting turbine performance under choking conditions. These models either neglect the impact of losses on choking or increase the computational complexity significantly. This limitation is addressed in this work, presenting a novel meanline model. The choking state at each cascade is determined by maximizing the mass flow rate, while taking into account the effect of losses. Leveraging the method of Lagrange multipliers, the optimization problems are transformed into a set of equations that seamlessly integrate with the rest of the meanline model. The resulting system of equations is then solved simultaneously using efficient root-finding algorithms, resulting in fast and reliable convergence. Validation against experimental data from three different turbines demonstrates the model’s ability to accurately predict mass flow rate, torque, and exit flow angles across single-stage and multistage turbines, with errors typically within ±2.5% and ±5.0% for mass flow rate and torque, respectively, and within ±5 deg for flow angles. The proposed approach represents a significant advancement in meanline modeling, offering improved accuracy and computational efficiency.

References

1.
Breeze
,
P.
,
2014
,
Power Generation Technologies
, 2nd ed.,
Newnes
,
Oxford, UK
.
2.
Romei
,
A.
,
Gaetani
,
P.
,
Giostri
,
A.
, and
Persico
,
G.
,
2020
, “
The Role of Turbomachinery Performance in the Optimization of Supercritical Carbon Dioxide Power Systems
,”
ASME J. Turbomach.
,
142
(
7
), p.
071001
.
3.
Colonna
,
P.
,
Casati
,
E.
,
Trapp
,
C.
,
Mathijssen
,
T.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
, and
Uusitalo
,
A.
,
2015
, “
Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
100801
.
4.
Mattingly
,
J.
, and
Ohain
,
H. v.
,
2006
,
Elements of Propulsion: Gas Turbines and Rockets
,
AIAA
,
Reston, VA
.
5.
Dincer
,
I.
, and
Kanoglu
,
M.
,
2010
,
Refrigeration Systems and Applications
, 2nd ed.,
Wiley
,
Chichester, West Sussex, UK
.
6.
Dixon
,
S.
,
2014
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 7th ed.,
Elsevier Science
,
Butterworth-Heinemann, Amsterdam, Netherlands
.
7.
Denton
,
J. D.
, and
Dawes
,
W. N.
,
1998
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
(
2
), pp.
107
124
.
8.
Denton
,
J. D.
,
2017
, “
Multall—An Open Source, Computational Fluid Dynamics Based, Turbomachinery Design System
,”
ASME J. Turbomach.
,
139
(
12
), p.
121001
.
9.
Astolfi
,
M.
,
Alfani
,
D.
,
Lasala
,
S.
, and
Macchi
,
E.
,
2018
, “
Comparison Between ORC and CO2 Power Systems for the Exploitation of Low-Medium Temperature Heat Sources
,”
Energy
,
161
, pp.
1250
1261
.
10.
Jiménez-Arreola
,
M.
,
Pili
,
R.
,
Dal Magro
,
F.
,
Wieland
,
C.
,
Rajoo
,
S.
, and
Romagnoli
,
A.
,
2018
, “
Thermal Power Fluctuations in Waste Heat to Power Systems: An Overview on the Challenges and Current Solution
,”
Appl. Therm. Eng.
,
134
, pp.
576
584
.
11.
Arabkoohsar
,
A.
,
Rahrabi
,
H. R.
,
Alsagri
,
A. S.
, and
Alrobaian
,
A. A.
,
2020
, “
Impact of Off-Design Operation on the Effectiveness of a Low-Temperature Compressed Air Energy Storage System
,”
Energy
,
197
, p.
117176
.
12.
Parisi
,
S.
,
Desai
,
N. B.
, and
Haglind
,
F.
,
2023
, “
Thermo-Economic Assessment of Pumped Thermal Electricity Storage Systems Employing Reversible Turbomachinery
,” Proceedings of the ASME 2023, Washington, DC, July 10–12.
13.
Parisi
,
S.
, and
Haglind
,
F.
,
2023
, “
Numerical Analysis of Reversible Radial-Flow Turbomachinery for Energy Storage Applications
,” Proceedings of ASME Turbo Expo 2023, Boston, MA, June 26–30.
14.
Rúa
,
J.
,
Agromayor
,
R.
,
Hillestad
,
M.
, and
Nord
,
L. O.
,
2020
, “
Optimal Dynamic Operation of Natural Gas Combined Cycles Accounting for Stresses in Thick-Walled Components
,”
Appl. Therm. Eng.
,
170
, pp.
1
13
.
15.
Rúa
,
J.
,
Bui
,
M.
,
Nord
,
L. O.
, and
Mac Dowell
,
N.
,
2020
, “
Does CCS Reduce Power Generation Flexibility? A Dynamic Study of Combined Cycles With Post-Combustion CO2 Capture
,”
Int. J. Greenhouse Gas Control
,
95
, pp.
1
10
.
16.
Genrup
,
M.
,
Carlsson
,
I.
,
Engdar
,
U.
, and
Assadi
,
M.
,
2005
, “
A Reduced-Order Through-Flow Program for Choked and Cooled Axial Turbines
,” Proceedings of ASME Turbo Expo 2005, Reno, NV, June 6–9, pp.
1161
1168
.
17.
Pini
,
M.
,
Persico
,
G.
,
Casati
,
E.
, and
Dossena
,
V.
,
2013
, “
Preliminary Design of a Centrifugal Turbine for Organic Rankine Cycle Applications
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042312
.
18.
Jones
,
S. M.
,
2015
, “
Design of an Object-Oriented Turbomachinery Analysis Code: Initial Results
,” ISABE, International Symposium on Airbreathing Engines, Phoenix, AZ, Oct. 25–30, Document ID: 20160001350.
19.
Hendricks
,
E. S.
,
2016
, “
Meanline Analysis of Turbines With Choked Flow in the Object-Oriented Turbomachinery Analysis Code
,” AIAA SciTech Forum, San Diego, CA, Jan. 4–8, Document ID: 20160004963.
20.
Da Lio
,
L.
,
Manente
,
G.
, and
Lazzaretto
,
A.
,
2017
, “
A Mean-line Model to Predict the Design Efficiency of Radial Inflow Turbines in Organic Rankine Cycle (ORC) Systems
,”
Appl. Energy.
,
205
, pp.
187
209
.
21.
Meroni
,
A.
,
Robertson
,
M.
,
Martinez-Botas
,
R.
, and
Haglind
,
F.
,
2018
, “
A Methodology for the Preliminary Design and Performance Prediction of High-Pressure Ratio Radial-Inflow Turbines
,”
Energy
,
164
, pp.
1062
1078
.
22.
Agromayor
,
R.
, and
Nord
,
L. O.
,
2019
, “
Preliminary Design and Optimization of Axial Turbines Accounting for Diffuser Performance
,”
Int. J. Turbomachinery, Propulsion Power
,
4
(
3
), p.
32
.
23.
Hagen
,
B. A.
,
Agromayor
,
R.
, and
Nekså
,
P.
,
2021
, “
Equation-Oriented Methods for Design Optimization and Performance Analysis of Radial Inflow Turbines
,”
Energy
,
237
, p.
121596
.
24.
Manfredi
,
M.
,
Alberio
,
M.
,
Astolfi
,
M.
, and
Spinelli
,
A.
,
2021
, “
A Reduced-Order Model for the Preliminary Design of Small-Scale Radial Inflow Turbines
,” Proceedings of ASME Turbo Expo 2021, Virtual, Online, June 7–11,
American Society of Mechanical Engineers Digital Collection
.
25.
Ketata
,
A.
, and
Driss
,
Z.
,
2022
, “
A Methodology for Loss and Performance Assessment of a Variable Geometry Turbocharger Turbine Through a New Meanline FORTRAN Program
,”
Eng. Comput.
,
39
(
4
), pp.
1597
1620
.
26.
Anderson
,
L. B.
,
Agromayor
,
R.
, and
Nord
,
L. O.
,
2022
, “
Method for Mean-Line Design and Performance Prediction of One-Stage Axial Turbines
,”
Proceedings of the 63rd International Conference of Scandinavian Simulation Society
,
Trondheim, Norway
,
Sept. 20–21
,
Linköping University Electronic Press
, pp. 421nd428..
27.
Shahbazi
,
A. A.
,
Esfahanian
,
V.
,
Taghavi
,
A.
,
Salavati-Zadeh
,
A.
,
Poursamad
,
A.
, and
Zirak
,
S.
,
2023
, “
Performance Estimation of Multi-Stage Cooled Axial Flow Turbines Under Choked Conditions
,”
Appl. Therm. Eng.
,
230
, p.
120828
.
28.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
,
1951
, “A Method of Performance Estimation for Axial-Flow Turbines,”
Ministry of Supply
,
London, UK
, Aeronautical Research Council Reports and Memoranda 2974.
29.
Shacham
,
M.
,
Macchieto
,
S.
,
Stutzman
,
L. F.
, and
Babcock
,
P.
,
1982
, “
Equation Oriented Approach to Process Flowsheeting
,”
Comput. Chem. Eng.
,
6
(
2
), pp.
79
95
.
30.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
, 2nd ed. (
Springer Series in Operations Research),
Springer
,
New York
.
31.
Pantelides
,
C. C.
, and
Barton
,
P. I.
,
1993
, “
Equation-Oriented Dynamic Simulation Current Status and Future Perspectives
,”
Comput. Chem. Eng.
,
17
(
1
), pp.
S263
S285
.
32.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow: 1
,
Wiley
,
New York
.
33.
Tosto
,
F.
,
Lettieri
,
C.
,
Pini
,
M.
, and
Colonna
,
P.
,
2021
, “
Dense-Vapor Effects in Compressible Internal Flows
,”
Phys. Fluids.
,
33
(
8
), p.
086110
.
34.
Kofskey
,
M. G.
,
Nusbaum
,
W. J.
, and
Haas
,
J. E.
,
1974
, “
Turbine for a Low Cost Turbojet Engine. 1: Design and Cold-Air Performance
,”
National Aeronautics and Space Administration (NASA)
,
Cleveland, OH
, Technical Report No. E-7776, https://ntrs.nasa.gov/citations/19740018139
35.
Kofskey
,
M. G.
, and
Nusbaum
,
W. J.
,
1972
, “Design and Cold-Air Investigation of a Turbine for a Small Low-Cost Turbofan Engine,”
National Aeronautics and Space Administration (NASA)
,
Cleveland, OH
, Technical Report No. NASA-TN-D-6967, https://ntrs.nasa.gov/citations/19720024422.
36.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
,
1951
, “An Examination of the Flow and Pressure Losses in Blade Rows of Axial-Flow Turbines,”
Ministry of Supply
,
London, UK
, Aeronautical Research Council Reports and Memoranda 2891.
37.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
38.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
39.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
.
40.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
,
ASME Press
,
New York
.
41.
Dunham
,
J.
, and
Came
,
P. M.
,
1970
, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
ASME J. Eng. Power
,
92
(
3
), pp.
252
256
.
42.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Power
,
104
(
1
), pp.
111
119
.
43.
Moustapha
,
S. H.
,
Kacker
,
S. C.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
(
2
), pp.
267
276
.
44.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
1997
, “
Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation
,”
ASME J. Turbomach.
,
119
(
2
), pp.
193
200
.
45.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2004
, “
The Influence of Leading-Edge Geometry on Secondary Losses in a Turbine Cascade at the Design Incidence
,”
ASME J. Turbomach.
,
126
(
2
), pp.
277
287
.
46.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2006
, “
An Empirical Prediction Method for Secondary Losses in Turbines—Part II: A New Secondary Loss Correlation
,”
ASME J. Turbomach.
,
128
(
2
), pp.
281
291
.
47.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2006
, “
An Empirical Prediction Method for Secondary Losses in Turbines—Part I: A New Loss Breakdown Scheme and Penetration Depth Correlation
,”
ASME J. Turbomach.
,
128
(
2
), pp.
273
280
.
48.
Moré
,
J. J.
,
Garbow
,
B. S.
, and
Hillstrom
,
K. E.
,
1980
, “User Guide For MINPACK-1,”
Argonne National Laboratory
,
Argonne, IL
, Techmical Report No. ANL-80-74.
49.
Chen
,
H. S.
, and
Stadtherr
,
M. A.
,
1981
, “
A modification of Powell's dogleg method for solving systems of nonlinear equations
,”
Computers & Chemical Engineering
,
5
(
3
), pp.
143
150
.
50.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.
51.
Glassman
,
A. J.
,
1994
, “
Turbine Design and Application: Volume 3
,” National Aeronautics and Space Administration (NASA), https://ntrs.nasa.gov/citations/19950015924
You do not currently have access to this content.