Abstract

This article investigates the boundary layer on the suction surface of a low-pressure turbine (LPT) subjected to upstream wakes with three different unsteady flow cases, characterized by the variation of flow coefficients. The unsteady behaviors of the boundary layer on the LPT suction surface are studied numerically and experimentally. The Reynolds number in the cascade is constant. Three flow coefficients are achieved by varying the bar speed, while the cascade's outlet velocity remains stable across the three test cases. The wake shapes under the three flow coefficients are captured by numerical simulation, and the instantaneous characteristics of the boundary layer are analyzed by hot-film test data and numerical results. The wake can be divided into a center and a tail, each with different effects on boundary layer multimode transitions. The wake center promotes the separation bubble breakdown, inducing wake-induced transition. Klebanoff streaks, formed by shear sheltering at the blade's leading edge, accelerate wake-induced transition by breaking down vortices in the interaction between the wake tail and the boundary layer. Under the three different flow coefficients, the wake shapes are different, resulting in a difference in the intensity and development of the Klebanoff streaks. The interactions among the Klebanoff streaks and roll-up vortices, the wake shapes, and the timing of Klebanoff streak involvement in the wake-induced transitions are important coupled factors. Additionally, the flow coefficient can change the factors, resulting in different wake-induced transitions, which should be considered in the design of high-lift LPTs.

References

1.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
(
6
), pp.
419
454
.
2.
Howell
,
R. J.
,
Hodson
,
H. P.
,
Schulte
,
V.
,
Schiffer
,
H.-P.
,
Haselbach
,
F.
, and
Harvey
,
N. W.
,
2002
, “
Boundary Layer Development in the BR710 and BR715 LP Turbines—The Implementation of High-Lift and Ultra-High-Lift Concepts
,”
ASME J. Turbomach.
,
124
(
3
), pp.
385
392
.
3.
Mayle
,
R. E.
,
1991
, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,”
Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General
,
American Society of Mechanical Engineers
,
Orlando, FL
, p.
V005T17A001
.
4.
Schobeiri
,
M. T.
, and
Ӧztürk
,
B.
,
2004
, “
Experimental Study of the Effect of Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Reattachment Along the Surface of a Low Pressure Turbine Blade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
663
676
.
5.
De Vincentiis
,
L.
,
Ðurović
,
K.
,
Lengani
,
D.
,
Simoni
,
D.
,
Pralits
,
J.
,
Henningson
,
D. S.
, and
Hanifi
,
A.
,
2023
, “
Effects of Upstream Wakes on the Boundary Layer Over a Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
145
(
5
), p.
051011
.
6.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
,
1997
, “
Development of Blade Profiles for Low-Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
(
3
), pp.
531
538
.
7.
Sajadmanesh
,
S. M.
,
Mojaddam
,
M.
,
Mohseni
,
A.
, and
Nikparto
,
A.
,
2019
, “
Numerical Identification of Separation Bubble in an Ultra-High-Lift Turbine Cascade Using URANS Simulation and Proper Orthogonal Decomposition
,”
Aerosp. Sci. Technol.
,
93
, p.
105329
.
8.
Wang
,
J.-S.
, and
Wang
,
J.-J.
,
2021
, “
Wake-Induced Transition in the Low-Reynolds-Number Flow Over a Multi-Element Airfoil
,”
J. Fluid Mech.
,
915
, p.
A28
.
9.
Lu
,
W.
,
Huang
,
G.
, and
Yang
,
Y.
,
2021
, “
Preliminary Study on Pulsed Jets With Three-Dimensional Effects for Flow Separation Control in a Compressor Blade
,”
Aerosp. Sci. Technol.
,
117
, p.
106966
.
10.
Qu
,
X.
,
Zhang
,
Y.
,
Lu
,
X.
,
Zhu
,
J.
, and
Zhang
,
Y.
,
2021
, “
Unsteady Fluidic Oscillators for Active Controlling Boundary Layer Separation in an Ultra-High-Lift Low-Pressure Turbine
,”
Aerosp. Sci. Technol.
,
119
, p.
107130
.
11.
Lake
,
J.
,
King
,
P.
, and
Rivir
,
R.
,
2000
, “
Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves
,”
38th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 10–13
.
12.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Volino
,
R. J.
,
2020
, “
The Effect of a Systematic Change in Surface Roughness Skewness on Turbulence and Drag
,”
Int. J. Heat Fluid Flow
,
85
, p.
108669
.
13.
Bloxham
,
M.
,
Reimann
,
D.
,
Crapo
,
K.
,
Pluim
,
J.
, and
Bons
,
J. P.
,
2009
, “
Synchronizing Separation Flow Control With Unsteady Wakes in a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021019
.
14.
Lengani
,
D.
,
Simoni
,
D.
,
Pralits
,
J. O.
,
Đurović
,
K.
,
De Vincentiis
,
L.
,
Henningson
,
D. S.
, and
Hanifi
,
A.
,
2022
, “
On the Receptivity of Low-Pressure Turbine Blades to External Disturbances
,”
J. Fluid Mech.
,
937
, p.
A36
.
15.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), p.
111006
.
16.
Coull
,
J. D.
,
Thomas
,
R. L.
, and
Hodson
,
H. P.
,
2010
, “
Velocity Distributions for Low Pressure Turbines
,”
ASME J. Turbomach.
,
132
(
4
), p.
041006
.
17.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
1998
, “
Shear Sheltering and the Continuous Spectrum of the Orr–Sommerfeld Equation
,”
Phys. Fluids
,
10
(
8
), pp.
2006
2011
.
18.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
.
19.
Nagabhushana Rao
,
V.
,
Tucker
,
P. G.
,
Jefferson-Loveday
,
R. J.
, and
Coull
,
J. D.
,
2013
, “
Large Eddy Simulations in Low-Pressure Turbines: Effect of Wakes at Elevated Free-Stream Turbulence
,”
Int. J. Heat Fluid Flow
,
43
, pp.
85
95
.
20.
Hamba
,
F.
,
2005
, “
Nonlocal Analysis of the Reynolds Stress in Turbulent Shear Flow
,”
Phys. Fluids
,
17
(
11
), p.
115102
.
21.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
22.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2009
, “
Transition Mechanisms in Separation Bubbles Under Low- and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
.
23.
Durbin
,
P.
, and
Wu
,
X.
,
2007
, “
Transition Beneath Vortical Disturbances
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
107
128
.
24.
Zaki
,
T. A.
,
2013
, “
From Streaks to Spots and on to Turbulence: Exploring the Dynamics of Boundary Layer Transition
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
451
473
.
25.
Sun
,
S.
,
Tan
,
T.
,
Wu
,
X.
,
Lu
,
X.
,
Zhang
,
Y.
, and
Zhu
,
J.
,
2020
, “
Influence of the Upstream Wakes on the Boundary Layer of a High-Lift Low-Pressure Turbine at Positive Incidence
,”
J. Aerosp. Eng.
,
33
(
6
), p.
04020077
.
26.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.
27.
Canepa
,
E.
,
Lengani
,
D.
,
Nilberto
,
A.
,
Petronio
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2021
, “
Flow Coefficient and Reduced Frequency Effects on Wake-Boundary Layer Interaction in Highly Accelerated LPT Cascade
,”
Int. J. Turbomach. Propuls. Power
,
6
(
3
), p.
32
.
28.
Dellacasagrande
,
M.
,
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Granata
,
A. A.
,
Giovannini
,
M.
,
Rubechini
,
F.
, and
Bertini
,
F.
,
2023
, “
Analysis of Unsteady Loss Sensitivity to Incidence Angle Variation in Low Pressure Turbine
,”
Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 13B: Turbomachinery — Axial Flow Turbine Aerodynamics
,
Boston, MA
,
June 26–30
.
29.
Bich
,
W.
,
Cox
,
M. G.
, and
Harris
,
P. M.
,
2006
, “
Evolution of the ‘Guide to the Expression of Uncertainty in Measurement
,”
Metrologia
,
43
(
4
), p.
S161
S166
.
30.
Mahallati
,
A.
,
McAuliffe
,
B. R.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2012
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low Reynolds Numbers—Part I: Steady Flow Measurements
,”
ASME J. Turbomach.
,
135
(
1
), p.
011010
.
31.
Cui
,
J.
,
Nagabhushana Rao
,
V.
, and
Tucker
,
P.
,
2015
, “
Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
138
(
1
), p.
011003
.
32.
Morsbach
,
C.
,
Bergmann
,
M.
,
Tosun
,
A.
,
Klose
,
B. F.
,
Bechlars
,
P.
, and
Kügeler
,
E.
,
2024
, “
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme—Part III: Secondary Flow Effects
,”
ASME J. Turbomach.
,
146
(
2
), p.
021007
.
33.
Funazaki
,
K.-I.
,
Yamada
,
K.
,
Chiba
,
Y.
, and
Tanaka
,
N.
,
2008
, “
Numerical and Experimental Studies on Separated Boundary Layers Over Ultra-High Lift Low-Pressure Turbine Cascade Airfoils With Variable Solidity: Effects of Free-Stream Turbulence
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 6: Turbomachinery, Parts A, B, and C
,
Berlin, Germany
,
June 9–13
, pp.
1243
1252
.
34.
Miki
,
K.
, and
Ameri
,
A.
,
2022
, “
Improved Prediction of Losses With Large Eddy Simulation in a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
7
), p.
071002
.
35.
Mittal
,
R.
,
Venkatasubramanian
,
S.
, and
Najjar
,
F.
,
2001
, “
Large-Eddy Simulation of Flow Through a Low-Pressure Turbine Cascade
,”
15th AIAA Computational Fluid Dynamics Conference
,
Anaheim, CA
,
June 11–14
,
AIAA 2001-2560
.
36.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2002
, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison With Experiments
,”
Flow Turbul. Combust.
,
69
(
3
), pp.
295
329
.
37.
Langtry
,
R. B.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes
,”
Doctoral thesis
,
University of Stuttgart
,
Germany
, http://elib.uni-stuttgart.de/handle/11682/1722, Accessed August 19, 2024.
38.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1998
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
,
120
(
1
), pp.
28
35
.
39.
Simoni
,
D.
,
Berrino
,
M.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2015
, “
Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade Under Steady and Unsteady Incoming Flow Conditions
,”
ASME J. Turbomach.
,
137
(
7
), p.
071009
.
40.
Li
,
Z.
, and
Zheng
,
X.
,
2017
, “
Review of Design Optimization Methods for Turbomachinery Aerodynamics
,”
Prog. Aerosp. Sci.
,
93
, pp.
1
23
.
41.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2014
, “
POD Analysis of the Unsteady Behavior of a Laminar Separation Bubble
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
70
79
.
42.
Legrand
,
M.
,
Nogueira
,
J.
, and
Lecuona
,
A.
,
2011
, “
Flow Temporal Reconstruction From Non-Time-Resolved Data Part I: Mathematic Fundamentals
,”
Exp. Fluids
,
51
(
4
), pp.
1047
1055
.
43.
Verdoya
,
J.
,
Dellacasagrande
,
M.
,
Lengani
,
D.
,
Simoni
,
D.
, and
Ubaldi
,
M.
,
2021
, “
Inspection of Structures Interaction in Laminar Separation Bubbles With Extended Proper Orthogonal Decomposition Applied to Multi-Plane Particle Image Velocimetry Data
,”
Phys. Fluids
,
33
(
4
), p.
043607
.
44.
Liu
,
C.
,
Wang
,
Y.
,
Yang
,
Y.
, and
Duan
,
Z.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys. Mech. Astron.
,
59
(
8
), p.
684711
.
45.
Ovchinnikov
,
V.
,
Piomelli
,
U.
, and
Choudhari
,
M. M.
,
2006
, “
Numerical Simulations of Boundary-Layer Transition Induced by a Cylinder Wake
,”
J. Fluid Mech.
,
547
(
1
), pp.
413
441
.
46.
Zaki
,
T. A.
, and
Durbin
,
P. A.
,
2006
, “
Continuous Mode Transition and the Effects of Pressure Gradient
,”
J. Fluid Mech.
,
563
, pp.
357
388
.
You do not currently have access to this content.