Graphical Abstract Figure

Static pressure contour of 4th rotor blade showing supersonic behavior for CH4 case

Graphical Abstract Figure

Static pressure contour of 4th rotor blade showing supersonic behavior for CH4 case

Close modal

Abstract

With the trend to full decarbonization, a full-hydrogen economy development is a key industrial objective. Gas turbines, currently one of the cleanest fossil fuel-based power generation solutions, provide reliable and on-demand power. The introduction of hydrogen into the fuel mix of existing gas turbines represents a solution with great potential to provide low-carbon or even carbon-free energy. High-hydrogen-content fuels, however, challenge the efficient operation of the gas turbine expander, as crucial aspects such as increased flowrate, different gas properties, and temperature operating range may affect performance and structural integrity. To evaluate the impact of this conversion, a numerical investigation of five cases with increasing percentages of hydrogen in the fuel was carried out for an industrial four-stage gas turbine module. The variation of turbine inlet temperature distribution from the combustion chamber was considered, to assess the impact of the unconventional fuel on the well-known aeromechanical behavior of the last stage blades. Variations in capacity, efficiency, power, and potential limits due to aeroelasticity were evaluated, identifying the most relevant differences with respect to the full-methane case. All these analyses confirm the possibility of employing high-hydrogen fuel operation in a current gas turbine without the need of a further redesign while maintaining acceptable performance levels.

References

1.
De Robbio
,
R.
,
2017
, “
Innovative Combustion Analysis of a Micro-Gas Turbine Burner Supplied With Hydrogen-Natural Gas Mixtures
,”
Energy Proc.
,
126
(
1
), pp.
858
866
.
2.
Corchero
,
G.
, and
Montañés
,
J. L.
,
2005
, “
An Approach to the Use of Hydrogen for Commercial Aircraft Engines
,”
Proc. Inst. Mech. Eng., Part G: J. Aeros. Eng.
,
219
(
2
).
3.
Burnes
,
D.
, and
Camou
,
A.
,
2019
, “
Impact of Fuel Composition on Gas Turbine Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101006
.
4.
Reale
,
F.
, and
Sannino
,
R.
,
2021
, “
Water and Steam Injection in Micro Gas Turbine Supplied by Hydrogen Enriched Fuels: Numerical Investigation and Performance Analysis
,”
Int. J. Hydrogen. Energy.
,
46
(
47
), pp.
24366
24381
.
5.
Alhuyi
,
N. M.
,
Fahim
,
A. M.
,
Salem
,
M.
, and
Assad
,
M. E. H.
,
2022
, “
Utilization of Hydrogen in Gas Turbines: A Comprehensive Review
,”
Inter. J. Low-Carbon Technol.
,
17
(
1
), pp.
513
519
.
6.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.
7.
Hydrogen Power with Siemens Gas Turbines
,
2020
, https://api.semanticscholar.org/CorpusID:223602728.
8.
Davison
,
J.
,
2017
,
“Review of Gas Turbines and their Ability to use Hydrogen-Containing Fuel Gas,”
Report
9.
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Comparison of the AUSM+-up and Other Advection Schemes for Turbomachinery Applications
,”
Shock Waves
,
29
(
7
), pp.
705
716
.
10.
Giovannini
,
M.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Dominguez
,
A.
,
2015
, “
A Hybrid Parallelization Strategy of a CFD Code for Turbomachinery Applications
,”
11th European Conference on Turbomachinery Fluid dynamics & Thermodynamics
,
Madrid, Spain
,
Mar. 23–27
.
11.
Pacciani
,
R.
, and
Spano
,
E.
,
2006
, “
Numerical Investigation of the Effect of Roughness and Passing Wakes on Lp Turbine Blades Performance
,”
ASME Turbo Expo 2006
,
Barcelona, Spain
,
May 8–11
, pp.
1713
1722
.
12.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Ibaraki
,
S.
,
2008
, “
Numerical Investigation of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
130
(
1
), p.
011010
.
13.
Marconcini
,
M.
,
Bianchini
,
A.
,
Checcucci
,
M.
,
Ferrara
,
G.
,
Arnone
,
A.
,
Ferrari
,
L.
,
Biliotti
,
D.
, and
Rubino
,
D. T.
,
2016
, “
A Three-Dimensional Time-Accurate Computational Fluid Dynamics Simulation of the Flow Field Inside a Vaneless Diffuser During Rotating Stall Conditions
,”
ASME J. Turbomach.
,
139
(
2
), p.
021001
.
14.
Pinelli
,
L.
,
Vanti
,
F.
,
Peruzzi
,
L.
,
Arnone
,
A.
,
Bessone
,
A.
,
Bettini
,
C.
,
Guida
,
R.
,
Marré Brunenghi
,
M.
, and
Slama
,
V.
,
2020
, “
Aeromechanical Characterization of a Last Stage Steam Blade At Low Load Operation: Part 2 – Computational Modelling and Comparison
,”
ASME Turbo Expo 2020
,
Virtual, Online
,
Sept. 21–25
.
15.
Pinelli
,
L.
,
Lori
,
F.
,
Marconcini
,
M.
,
Pacciani
,
R.
, and
Arnone
,
A.
,
2021
, “
Validation of a Modal Work Approach for Forced Response Analysis of Bladed Disks
,”
Appl. Sci.
,
11
(
6
), p.
5437
.
16.
Vanti
,
F.
,
Pinelli
,
L.
,
Poli
,
F.
, and
Arnone
,
A.
,
2017,
, “
Aeroelastic Investigation of Turbine Blade Assemblies: Cluster Systems and Mistuned Rows
,”
12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Stockholm, Sweden
,
Apr. 3–7
.
17.
Pinelli
,
L.
,
Poli
,
F.
,
Di Grazia
,
E.
,
Arnone
,
A.
, and
Torzo
,
D.
,
2013
, “
A Comprehensive Numerical Study of Tone Noise Emissions in a Multistage Cold Flow Rig
,”
19th AIAA/CEAS Aeroacoustics Conference
,
Berlin, Germany
,
May 27–29
.
18.
Arnone
,
A.
,
Liou
,
M.
, and
Povinelli
,
L.
,
1995
, “
Integration of Navier-Stokes Equations Using Dual Time Stepping and a Multigrid Method
,”
AIAA J.
,
33
(
5
), pp.
985
990
.
19.
Vanti
,
F.
,
Agnolucci
,
A.
,
Pinelli
,
L.
, and
Arnone
,
A.
,
2019
, “
An Integrated Numerical Procedure for Flutter and Forced Response Assessment of Turbomachinery Blade-rows
,”
13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Lausanne, Switzerland
,
Apr. 8–12
.
20.
Barreca
,
P.
,
Pinelli
,
L.
,
Vanti
,
F.
, and
Arnone
,
A.
,
2018
, “
Aeroelastic Investigation of a Transonic Compressor Rotor With Multi-Row Effects
,”
Energy Proc.
,
148
(
1
), pp.
58
65
.
21.
Pinelli
,
L.
,
Mariotti
,
F.
,
Arnone
,
A.
,
Marconcini
,
M.
,
Arcangeli
,
L.
,
Ciuchicchi
,
L.
, and
Maceli
,
N.
,
2022
, “
Numerical Investigation of Potential Flow Induced Vibrations of Steam Turbine Last Stage Rotor at Low Load Operation – Part 1: Sensitivity to Flutter Occurrence
,”
Turbo Expo 2022
,
Rotterdam, Netherlands
,
June 13–17
.
22.
Tamang
,
S.
, and
Park
,
H.
,
2023
, “
Numerical Investigation of Combustion Characteristics for Hydrogen Mixed Fuel in a Can-Type Model of the Gas Turbine Combustor
,”
Int. J. Hydrogen. Energy.
,
48
(
30
), pp.
11493
11512
.
23.
Fu
,
Z.
,
Sui
,
L.
,
Lu
,
J.
,
Liu
,
J.
,
Weng
,
P.
,
Zeng
,
Z.
, and
Pan
,
W.
,
2023
, “
Investigation on Effects of Hydrogen Addition to the Thermal Performance of a Traditional Counter-Flow Combustor
,”
Energy
,
262
(
1
), p.
125465
.
24.
Shih
,
H.
, and
Liu
,
C.
,
2014
, “
A Computational Study on the Combustion of Hydrogen/Methane Blended Fuels for a Micro Gas Turbines
,”
Int. J. Hydrogen. Energy.
,
39
(
27
), pp.
15103
15115
.
You do not currently have access to this content.