Abstract

A single-stage transonic axial-flow fan is simulated using graphic processing unit (GPU)-accelerated wall-modeled large-eddy simulations. The computational meshes are generated using Voronoi diagram-based approach. Two types of mesh are employed for grid sensitivity study. The first type uses isotropic hexagonal close-packed (HCP) seeding whereas the second combines the background HCP mesh with anisotropic boundary-layer type of mesh around the blade surfaces. The effect of the rotor tip clearance is examined using a rotor-only configuration. The sweep of the performance curve at full rotation speed is carried out for both the rotor and the stage. The computational results are compared against the experimental measurement and excellent agreement is observed when adequate near-wall resolution is employed. The code performance of the GPU-accelerated solver is compared to the CPU-based version. The high throughput of the GPU solver significantly reduces the computational cost. On a mesh with 84 million control volumes, 10 rotor revolutions can be computed within 1 day using 20 GPUs.

References

1.
Yao
,
J.
,
Gorrell
,
S. E.
, and
Wadia
,
A. R.
,
2010
, “
High-Fidelity Numerical Analysis of Per-Rev-Type Inlet Distortion Transfer in Multistage Fans—Part I: Simulations With Selected Blade Rows
,”
ASME J. Turbomach.
,
132
(
4
), p.
041014
.
2.
Yao
,
J.
,
Gorrell
,
S. E.
, and
Wadia
,
A. R.
,
2010
, “
High-Fidelity Numerical Analysis of Per-Rev-Type Inlet Distortion Transfer in Multistage Fans—Part II: Entire Component Simulation and Investigation
,”
ASME J. Turbomach.
,
132
(
4
), p.
041015
.
3.
Mito
,
R.
, and
Yamashita
,
S.
,
2019
, “
Prediction of Rotating Stall During Startup for Axial Compressors
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, p. V02AT39A028.
4.
Yamada
,
K.
,
Furukawa
,
M.
,
Nakakido
,
S.
,
Tamura
,
Y.
,
Matsuoka
,
A.
, and
Nakayama
,
K.
,
2017
, “
A Study on Unsteady Flow Phenomena at Near-Stall in a Multi-Stage Axial Flow Compressor by Large-Scale DES With K Computer
,”
Int. J. Gas Turbine Propulsion Power Syst.
,
9
(
1
), pp.
18
26
.
5.
Geiser
,
G.
,
Wellner
,
J.
,
Kugeler
,
E.
,
Weber
,
A.
, and
Moors
,
A.
,
2018
, “
On the Simulation of Unsteady Turbulence and Transition Effects in a Multistage Low Pressure Turbine: Part II—Full-Wheel Simulation
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
,
p. V02CT42A043
.
6.
Casalino
,
D.
,
Hazir
,
A.
, and
Mann
,
A.
,
2018
, “
Turbofan Broadband Noise Prediction Using the Lattice Boltzmann Method
,”
AIAA J.
,
56
(
2
), pp.
609
628
.
7.
Kachele
,
T.
,
Rademakers
,
R. P. M.
,
Schneider
,
T.
, and
Niehuis
,
R.
,
2018
, “
Numerical Simulations of an Intake-Compressor System
,”
J. Global Power Propulsion Soc.
,
2
, pp.
442
452
.
8.
Brès
,
G. A.
,
Wang
,
K.
,
Emory
,
M.
,
Ivey
,
C. B.
, and
Bose
,
S.
,
2023
, “
GPU-Accelerated Large-Eddy Simulations of the NASA Fan Noise Source Diagnostic Test Benchmark
,”
AIAA Aviation 2023 Forum
,
San Diego, CA
,
June 12–16
.
9.
Urasek
,
D. C.
,
Gorrell
,
W. T.
, and
Cunnan
,
W. S.
,
1979
, “Performance of Two-Stage Fan Having Low-Aspect-Ratio, First-Stage Rotor Blading.” Tech. Rep. NASA-TP-1493, NASA.
10.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor.” Tech. Rep. NASA-TP-2879, NASA.
11.
Hathaway
,
M. D.
,
1986
, “Unsteady Flows in a Single-Stage Transonic Axial-Flow Fan Stator Row.” Tech. Rep. NASA-TM-88929, NASA.
12.
Bose
,
S. T.
, and
Park
,
G. I.
,
2018
, “
Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
50
, pp.
535
561
.
13.
Wang
,
M.
, and
Moin
,
P.
,
2002
, “
Dynamic Wall Modeling for Large-Eddy Simulation of Complex Turbulent Flows
,”
Phys. Fluids
,
14
(
7
), pp.
2043
2051
.
14.
Vreman
,
A.
,
2004
, “
An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications
,”
Phys. Fluids
,
16
(
10
), pp.
3670
3681
.
15.
Pierzga
,
M. J.
, and
Wood
,
J. R.
,
1985
, “
Investigation of the Three-Dimensional Flow Field Within a Transonic Fan Rotor: Experiment and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
436
448
.
16.
Prince, Jr.
,
D.C.
,
1985
, “
Discussion: “Investigation of the Three-Dimensional Flow Field Within a Transonic Fan Rotor: Experiment and Analysis” (Pierzga, M. J., and Wood, J. R., 1985, ASME J. Eng. Gas Turbines Power, 107, pp. 436–448)
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), p.
448
.
17.
Fidalgo
,
V. J.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
.
You do not currently have access to this content.