Abstract

The popular use of response surface methodology (RSM) accelerates the solutions of parameter identification and response analysis issues. However, accurate RSM models subject to aleatory and epistemic uncertainties are still challenging to construct, especially for multidimensional inputs, which is widely existed in real-world problems. In this study, an adaptive interval response surface methodology (AIRSM) based on extended active subspaces is proposed for mixed random and interval uncertainties. Based on the idea of subspace dimension reduction, extended active subspaces are given for mixed uncertainties, and interval active variable representation is derived for the construction of AIRSM. A weighted response surface strategy is introduced and tested for predicting the accurate boundary. Moreover, an interval dynamic correlation index is defined, and significance check and cross validation are reformulated in active subspaces to evaluate the AIRSM. The effectiveness of AIRSM is demonstrated on two test examples: three-dimensional nonlinear function and speed reducer design. They both possess a dominant one-dimensional active subspace with small estimation error, and the accuracy of AIRSM is verified by comparing with full-dimensional Monte Carlo simulates, thus providing a potential template for tackling high-dimensional problems involving mixed aleatory and interval uncertainties.

References

1.
Lee
,
I.
,
Choi
,
K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Dimension Reduction Method for Reliability-Based Robust Design Optimization
,”
Comput. Struct.
,
86
(
13
), pp.
1550
1562
.10.1016/j.compstruc.2007.05.020
2.
Ferson
,
S.
,
Joslyn
,
C. A.
,
Helton
,
J. C.
,
Oberkampf
,
W. L.
, and
Sentz
,
K.
,
2004
, “
Summary From the Epistemic Uncertainty Workshop: Consensus Amid Diversity
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
355
369
.10.1016/j.ress.2004.03.023
3.
Swiler
,
L. P.
, and
Eldred
,
M. S.
,
2009
, “
Efficient Algorithms for Mixed Aleatory-Epistemic Uncertainty Quantification With Application to Radiation-Hardened Electronics—Part I: Algorithms and Benchmark Results
,”
Sandia National Laboratory
,
Albuquerque, NM
, Report No. SAND2009-5805.
4.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25
), pp.
2131
2144
.10.1016/j.cma.2011.03.016
5.
Zang
,
T. A.
,
Hemsch
,
M. J.
,
Hilburger
,
M. W.
,
Kenny
,
S. P.
,
Luckring
,
J. M.
,
Maghami
,
P.
,
Padula
,
S. L.
, and
Stroud
,
W. J.
,
2002
, “
Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles
,”
National Aeronautics and Space Administration, Langley Research Center
,
Hampton, VA
, Report No. No. TM-2002-211462.
6.
Mark
,
M.
, and
Sankaran
,
M.
,
2008
, “
Uncertainty Quantification and Propagation in Multidisciplinary Analysis and Optimization
,”
AIAA Paper No. 2008-6038
.10.2514/6.2008-6038
7.
Le Maître
,
O. P.
, and
Knio
,
O. M.
,
2010
,
Introduction: Uncertainty Quantification and Propagation
,
Springer
,
New York
.
8.
Yao
,
W.
,
Chen
,
X.
,
Huang
,
Y.
, and
van Tooren
,
M.
,
2013
, “
An Enhanced Unified Uncertainty Analysis Approach Based on First Order Reliability Method With Single-Level Optimization
,”
Reliab. Eng. Syst. Saf.
,
116
, pp.
28
37
.10.1016/j.ress.2013.02.014
9.
Steenackers
,
G.
,
Guillaume
,
P.
, and
Vanlanduit
,
S.
,
2009
, “
Robust Optimization of an Airplane Component Taking Into Account the Uncertainty of the Design Parameters
,”
Qual. Reliab. Eng. Int.
,
25
(
3
), pp.
255
282
.10.1002/qre.966
10.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2017
, “
Remarks on Multi-Fidelity Surrogates
,”
Struct. Multidiscip. Optim.
,
55
(
3
), pp.
1029
1050
.10.1007/s00158-016-1550-y
11.
Rumpfkeil
,
M. P.
, and
Beran
,
P.
,
2017
, “
Construction of Dynamic Multifidelity Locally Optimized Surrogate Models
,”
AIAA J.
,
55
(
9
), pp.
3169
3179
.10.2514/1.J055834
12.
Hao
,
P.
,
Wang
,
B.
, and
Li
,
G.
,
2012
, “
Surrogate-Based Optimum Design for Stiffened Shells With Adaptive Sampling
,”
AIAA J.
,
50
(
11
), pp.
2389
2407
.10.2514/1.J051522
13.
Tang
,
G.
,
2013
,
Methods for High Dimensional Uncertainty Quantification: Regularization, Sensitivity Analysis, and Derivative Enhancement
,
Stanford University
,
Stanford, CA
.
14.
Scott
,
D. W.
,
2008
, “
The Curse of Dimensionality and Dimension Reduction
,”
Multivariate Density Estimation
,
Wiley
,
Weinheim, Germany
, pp.
195
217
.
15.
Li
,
M.
,
Hamel
,
J.
, and
Azarm
,
S.
,
2010
, “
Optimal Uncertainty Reduction for Multi-Disciplinary Multi-Output Systems Using Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
77
96
.10.1007/s00158-009-0372-6
16.
Russi
,
T. M.
,
2010
,
Uncertainty Quantification With Experimental Data and Complex System Models
,
University of California
,
Berkeley, CA
.
17.
Constantine
,
P. G.
,
Dow
,
E.
, and
Wang
,
Q.
,
2014
, “
Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces
,”
SIAM J. Sci. Comput.
,
36
(
4
), pp.
A1500
A1524
.10.1137/130916138
18.
Constantine
,
P. G.
,
2015
,
Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies
,
SIAM
,
Philadelphia, PA
.
19.
Constantine
,
P. G.
,
Emory
,
M.
,
Larsson
,
J.
, and
Iaccarino
,
G.
,
2015
, “
Exploiting Active Subspaces to Quantify Uncertainty in the Numerical Simulation of the HyShot II Scramjet
,”
J. Comput. Phys.
,
302
, pp.
1
20
.10.1016/j.jcp.2015.09.001
20.
Hu
,
X.
,
Zhou
,
Z.
,
Chen
,
X.
, and
Parks
,
G. T.
,
2018
, “
Chance-Constrained Optimization Approach Based on Density Matching and Active Subspaces
,”
AIAA J.
,
56
(
3
), pp.
1158
1169
.10.2514/1.J056262
21.
Chen
,
H.
,
Wang
,
Q.
,
Hu
,
R.
, and
Constantine
,
P.
,
2011
, “
Conditional Sampling and Experiment Design for Quantifying Manufacturing Error of Transonic Airfoil
,”
AIAA Paper No. 2011-658
.10.2514/6.2011-658
22.
Adduri
,
P. R.
, and
Penmetsa
,
R. C.
,
2009
, “
System Reliability Analysis for Mixed Uncertain Variables
,”
Struct. Saf.
,
31
(
5
), pp.
375
382
.10.1016/j.strusafe.2009.02.001
23.
Zhang
,
X. D.
, and
Huang
,
H. Z.
,
2010
, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Design Optimization Under Aleatory and Epistemic Uncertainties
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
165
175
.10.1007/s00158-008-0348-y
24.
Yao
,
W.
,
Chen
,
X. Q.
,
Huang
,
Y. Y.
,
Gurdal
,
Z.
, and
van Tooren
,
M.
,
2013
, “
Sequential Optimization and Mixed Uncertainty Analysis Method for Reliability-Based Optimization
,”
AIAA J.
,
51
(
9
), pp.
2266
2277
.10.2514/1.J052327
25.
Hu
,
X.
,
Chen
,
X.
,
Parks
,
G. T.
, and
Yao
,
W.
,
2016
, “
Review of Improved Monte Carlo Methods in Uncertainty-Based Design Optimization for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
86
, pp.
20
27
.10.1016/j.paerosci.2016.07.004
26.
Tripathy
,
R.
,
Bilionis
,
I.
, and
Gonzalez
,
M.
,
2016
, “
Gaussian Processes With Built-in Dimensionality Reduction: Applications to High-Dimensional Uncertainty Propagation
,”
J. Comput. Phys.
,
321
, pp.
191
223
.10.1016/j.jcp.2016.05.039
27.
Efron
,
B.
, and
Tibshirani
,
R. J.
,
1994
,
An Introduction to the Bootstrap
,
CRC Press
,
Boca Raton, FL
.
28.
Stewart
,
G. W.
,
1973
, “
Error and Perturbation Bounds for Subspaces Associated With Certain Eigenvalue Problems
,”
SIAM Review
,
15
(
4
), pp.
727
764
.10.1137/1015095
29.
Adamson
,
R. D.
,
Gill
,
P. M. W.
, and
Pople
,
J. A.
,
1998
, “
Empirical Density Function (EDF)
,”
Chem. Phys. Lett.
,
284
(
1–2
), pp.
6
11
.10.1016/S0009-2614(97)01282-7
30.
Zaman
,
K.
,
Rangavajhala
,
S.
,
Mcdonald
,
M. P.
, and
Mahadevan
,
S.
,
2011
, “
A Probabilistic Approach for Representation of Interval Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
96
(
1
), pp.
117
130
.10.1016/j.ress.2010.07.012
31.
Ferson
,
S.
,
Kreinovich
,
V.
,
Hajagos
,
J.
,
Oberkampf
,
W.
, and
Ginzburg
,
L.
,
2007
, “
Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2007-0939.
32.
Balesdent
,
M.
,
Morio
,
J.
, and
Marzat
,
J.
,
2013
, “
Kriging-Based Adaptive Importance Sampling Algorithms for Rare Event Estimation
,”
Struct. Saf.
,
44
, pp.
1
10
.10.1016/j.strusafe.2013.04.001
33.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
1996
, “
Response Surface Methodology: Process and Product in Optimization Using Designed Experiments
,”
Technometrics
,
38
(
3
), pp.
284
286
.10.1080/00401706.1996.10484509
34.
Fang
,
S. E.
,
Zhang
,
Q. H.
, and
Ren
,
W. X.
,
2015
, “
An Interval Model Updating Strategy Using Interval Response Surface Models
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
909
927
.10.1016/j.ymssp.2015.01.016
35.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
SIAM
,
Philadelphia, PA
.
36.
Eldred
,
M. S.
,
Swiler
,
L. P.
, and
Tang
,
G.
,
2011
, “
Mixed Aleatory-Epistemic Uncertainty Quantification With Stochastic Expansions and Optimization-Based Interval Estimation
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1092
1113
.10.1016/j.ress.2010.11.010
37.
Kaymaz
,
I.
, and
Mcmahon
,
C. A.
,
2005
, “
A Response Surface Method Based on Weighted Regression for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
20
(
1
), pp.
11
17
.10.1016/j.probengmech.2004.05.005
38.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.10.1016/S0951-8320(03)00058-9
39.
Agrawal
,
A.
,
Deshpande
,
P. D.
,
Cecen
,
A.
,
Basavarsu
,
G. P.
,
Choudhary
,
A. N.
, and
Kalidindi
,
S. R.
,
2014
, “
Exploration of Data Science Techniques to Predict Fatigue Strength of Steel From Composition and Processing Parameters
,”
Integr. Mater. Manuf. Innovation
,
3
(
1
), pp.
1
19
.10.1186/2193-9772-3-8
40.
Luo
,
W. C.
,
Luo
,
S. B.
, and
Wang
,
Z. G.
,
2003
, “
Multimethod Collaborative Optimization Algorithm Applied to Integral Optimal Design of Missile Propelled by Unchoked Solid Rocket Ramjet
,”
J. Natl. Univ. Defense Technol.
, 2003(2), pp.
14
18
.
41.
Ray
,
T.
,
2003
, “
Golinski's Speed Reducer Problem Revisited
,”
AIAA J.
,
41
(
3
), pp.
556
558
.10.2514/2.1984
You do not currently have access to this content.