Abstract

Structural nonlinearities are often spatially localized, such joints and interfaces, localized damage, or isolated connections, in an otherwise linearly behaving system. Quinn and Brink (2021, “Global System Reduction Order Modeling for Localized Feature Inclusion,” ASME J. Vib. Acoust., 143(4), p. 041006.) modeled this localized nonlinearity as a deviatoric force component. In other previous work (Najera-Flores, D. A., Quinn, D. D., Garland, A., Vlachas, K., Chatzi, E., and Todd, M. D., 2023, “A Structure-Preserving Machine Learning Framework for Accurate Prediction of Structural Dynamics for Systems With Isolated Nonlinearities,”), the authors proposed a physics-informed machine learning framework to determine the deviatoric force from measurements obtained only at the boundary of the nonlinear region, assuming a noise-free environment. However, in real experimental applications, the data are expected to contain noise from a variety of sources. In this work, we explore the sensitivity of the trained network by comparing the network responses when trained on deterministic (“noise-free”) model data and model data with additive noise (“noisy”). As the neural network does not yield a closed-form transformation from the input distribution to the response distribution, we leverage the use of conformal sets to build an illustration of sensitivity. Through the conformal set assumption of exchangeability, we may build a distribution-free prediction interval for both network responses of the clean and noisy training sets. This work will explore the application of conformal sets for uncertainty quantification of a deterministic structure-preserving neural network and its deployment in a structural health monitoring framework to detect deviations from a baseline state based on noisy measurements.

References

1.
Chinesta
,
F.
,
Cueto
,
E.
,
Abisset-Chavanne
,
E.
,
Duval
,
J. L.
, and
Khaldi
,
F. E.
,
2020
, “
Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data
,”
Arch. Comput. Methods Eng.
,
27
(
1
), pp.
105
134
.10.1007/s11831-018-9301-4
2.
Gardner
,
P.
,
Borgo
,
M. D.
,
Ruffini
,
V.
,
Hughes
,
A. J.
,
Zhu
,
Y.
, and
Wagg
,
D. J.
,
2020
, “
Towards the Development of an Operational Digital Twin
,”
Vibration
,
3
(
3
), pp.
235
265
.10.3390/vibration3030018
3.
Wagg
,
D. J.
,
Worden
,
K.
,
Barthorpe
,
R. J.
, and
Gardner
,
P.
,
2020
, “
Digital Twins: State-of-the-Art and Future Directions for Modeling and Simulation in Engineering Dynamics Applications
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
3
), p.
030901
.10.1115/1.4046739
4.
Thelen
,
A.
,
Zhang
,
X.
,
Fink
,
O.
,
Lu
,
Y.
,
Ghosh
,
S.
,
Youn
,
B. D.
,
Todd
,
M. D.
,
Mahadevan
,
S.
,
Hu
,
C.
, and
Hu
,
Z.
,
2022
, “
A Comprehensive Review of Digital Twin—Part 1: Modeling and Twinning Enabling Technologies
,”
Struct. Multidiscip. Optim.
,
65
(
12
), p.
354
.https://arxiv.org/pdf/2208.14197.pdf
5.
Wright
,
L.
, and
Davidson
,
S.
,
2020
, “
How to Tell the Difference Between a Model and a Digital Twin
,”
Adv. Model. Simul. Eng. Sci.
,
7
(
1
), p.
12
.10.1186/s40323-020-00147-4
6.
McClellan
,
A.
,
Lorenzetti
,
J.
,
Pavone
,
M.
, and
Farhat
,
C.
,
2022
, “
A Physics-Based Digital Twin for Model Predictive Control of Autonomous Unmanned Aerial Vehicle Landing
,”
Philos. Trans. R. Soc., A
,
380
(
2229
), p.
8
.10.1098/rsta.2021.0204
7.
Tsialiamanis
,
G.
,
Wagg
,
D. J.
,
Dervilis
,
N.
, and
Worden
,
K.
,
2021
, “
On Generative Models as the Basis for Digital Twins
,”
Data-Centric Eng.
,
2
, p.
e11
.10.1017/dce.2021.13
8.
Bonney
,
M. S.
, and
Wagg
,
D.
,
2022
, “
Historical Perspective of the Development of Digital Twins
,”
Special Topics in Structural Dynamics and Experimental Techniques (Conference Proceedings of the Society for Experimental Mechanics Series
, Vol.
5
),
Springer
,
Cham, Switzerland
, pp.
15
20
.10.1007/978-3-030-75914-8_2
9.
Thelen
,
A.
,
Zhang
,
X.
,
Fink
,
O.
,
Lu
,
Y.
,
Ghosh
,
S.
,
Youn
,
B. D.
,
Todd
,
M. D.
,
Mahadevan
,
S.
,
Hu
,
C.
, and
Hu
,
Z.
,
2023
, “
A Comprehensive Review of Digital Twin—Part 2: Roles of Uncertainty Quantification and Optimization, a Battery Digital Twin, and Perspectives
,”
Struct. Multidiscip. Optim.
,
66
(
1
), p.
1
.10.1007/s00158-022-03410-x
10.
Friswell
,
M. I.
,
Penny
,
J. E. T.
, and
Garvey
,
S. D.
,
1995
, “
Using Linear Model Reduction to Investigate the Dynamics of Structures With Local Non-Linearities
,”
Mech. Syst. Signal Process.
,
9
(
3
), pp.
317
328
.10.1006/mssp.1995.0026
11.
Quinn
,
D. D.
, and
Brink
,
A. R.
,
2021
, “
Global System Reduction Order Modeling for Localized Feature Inclusion
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
041006
.10.1115/1.4048890
12.
Najera-Flores
,
D. A.
,
Quinn
,
D. D.
,
Garland
,
A.
,
Vlachas
,
K.
,
Chatzi
,
E.
, and
Todd
,
M. D.
,
2023
, “
A Structure-Preserving Machine Learning Framework for Accurate Prediction of Structural Dynamics for Systems With Isolated Nonlinearities
,”.10.2139/ssrn.4573380
13.
Nemani
,
V.
,
Biggio
,
L.
,
Huan
,
X.
,
Hu
,
Z.
,
Fink
,
O.
,
Tran
,
A.
,
Wang
,
Y.
,
Du
,
X.
,
Zhang
,
X.
, and
Hu
,
C.
,
2023
, “
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
,”
Mech. Syst. Signal Process
, 205, p.
110796
.10.1016/j.ymssp.2023.110796
14.
Gal
,
Y.
, and
Ghahramani
,
Z.
,
2016
, “
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
,”
Proceedings of the 33rd International Conference on Machine Learning
, New York, June 20–22, pp.
1050
1059
.https://proceedings.mlr.press/v48/gal16.html
15.
MacKay
,
D. J. C.
,
1992
, “
A Practical Bayesian Framework for Backpropagation Networks
,”
Neural Comput.
,
4
(
3
), pp.
448
472
.10.1162/neco.1992.4.3.448
16.
Opitz
,
D.
, and
Maclin
,
R.
,
1999
, “
Popular Ensemble Methods: An Empirical Study
,”
J. Artif. Intell. Res.
,
11
(
1
), pp.
169
198
.10.1613/jair.614
17.
Liu
,
J. Z.
,
Lin
,
Z.
,
Padhy
,
S.
,
Tran
,
D.
,
Bedrax-Weiss
,
T.
, and
Lakshminarayanan
,
B.
,
2020
, “
Simple and Principled Uncertainty Estimation With Deterministic Deep Learning Via Distance Awareness
,” e-print arXiv:2006.10108.
18.
Shafer
,
G.
, and
Vovk
,
V.
,
2007
, “
A Tutorial on Conformal Prediction
,”
J. Mach. Learn. Res.
,
9
(
3
), pp.
371
421
.10.48550/arXiv.0706.3188
19.
Barber
,
R. F.
,
Candes
,
E. J.
,
Ramdas
,
A.
, and
Tibshirani
,
R. J.
,
2021
, “
Predictive Inference With the Jackknife+
,”
The Annals of Statistics
, 49(1), pp.
486
507
.10.1214/20-AOS1965
20.
Vlachas
,
K.
,
Garland
,
A.
,
Quinn
,
D. D.
, and
Chatzi
,
E.
,
2023
, “
Parametric Reduced Order Modelling for Component-Oriented Treatment and Localized Nonlinear Feature Inclusion
,”
Nonlinear Dyn.
, 112, pp.
3399
3420
.10.1007/s11071-023-09213-z
21.
Najera-Flores
,
D. A.
, and
Todd
,
M. D.
,
2023
, “
A Structure-Preserving Neural Differential Operator With Embedded Hamiltonian Constraints for Modeling Structural Dynamics
,”
Comput. Mech.
,
72
(
2
), pp.
241
252
.10.1007/s00466-023-02288-w
22.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J.-C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
505
592
.10.1016/j.ymssp.2005.04.008
23.
Wasserman
,
L.
,
2006
,
All of Nonparametric Statistics (Springer Texts in Statistics)
,
Springer-Verlag
,
Berlin, Germany
.10.1007/0-387-30623-4
24.
Kim
,
B.
,
Xu
,
C.
, and
Barber
,
R. F.
,
2020
, “
Predictive Inference Is Free With the Jackknife+-After-Bootstrap
,” e-print arXiv:2002.09025.
25.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,” e-print arXiv:1412.6980.
26.
Bradbury
,
J.
,
Frostig
,
R.
,
Hawkins
,
P.
,
Johnson
,
M. J.
,
Leary
,
C.
,
Maclaurin
,
D.
,
Necula
,
G.
,
Paszke
,
A.
,
VanderPlas
,
J.
,
Wanderman-Milne
,
S.
, and
Zhang
,
Q.
,
2018
, “
JAX Composable Transformations of Python+NumPy Programs
,”.http://github.com/google/jax
27.
Heek
,
J.
,
Levskaya
,
A.
,
Oliver
,
A.
,
Ritter
,
M.
,
Rondepierre
,
B.
,
Steiner
,
A.
, and
van Zee
,
M.
,
2023
, “
Flax: A Neural Network Library and Ecosystem for JAX
,”.http://github.com/google/flax
28.
MAPIE Development Team
,
2023
, “
MAPIE—Model Agnostic Prediction Interval Estimator
,”.https://github.com/scikit-learn-contrib/MAPIE
29.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
30.
Cramér
,
H.
,
1928
, “
On the Composition of Elementary Errors
,”
Scand. Actuarial J.
,
1928
(
1
), pp.
13
74
.10.1080/03461238.1928.10416862
31.
CSöRgő
,
S.
, and
Faraway
,
J. J.
,
2018
, “
The Exact and Asymptotic Distributions of Cramér-Von Mises Statistics
,”
J. R. Stat. Soc.: Ser. B (Methodol.)
,
58
(
1
), pp.
221
234
.10.1111/j.2517-6161.1996.tb02077.x
You do not currently have access to this content.