Abstract

Rotate vector (RV) reducer is an essential mechanical transmission device in industrial machinery, robotics, aerospace, and other fields. The dynamic transmission characteristics and strength of the cycloidal pin gear and turning-arm bearing significantly affect the motion accuracy and reliability of RV reducer. Uncertainties from manufacturing and assembly errors and working loads add complexity to these effects. Developing effective methods for uncertainty propagation and reliability analysis for the RV reducer is crucial. In this work, the mail failure modes of RV reducer are studied, and an effective reliability analysis method for RV reducer considering the correlation between multi-failure modes is proposed by combining polynomial chaos expansion (PCE) and saddlepoint approximation method (SPA). This paper develops an uncertainty propagation strategy for RV reducer based on dynamic simulation and PCE method with high accuracy. On this basis, a surrogated cumulant generating function (CGF) and SPA are combined to analyze the stochastic characteristics of the failure behaviors. Then, based on the probability density function (PDF) and cumulative distribution function (CDF) calculated by SPA, the copula function is employed to quantify the correlations between the multi-failure modes. Further, the system reliability with multi-failure modes is estimated by SPA and optimal copula function. The validity of the proposed approach is illustrated by RV-320E reducer reliability estimation, and the results show that the proposed method can provide an effective reliability assessment technology for complex system under unknown physical model and distribution characteristics.

References

1.
Demenego
,
A.
,
Vecchiato
,
D.
,
Litvin
,
F. L.
,
Nervegna
,
N.
, and
Mancó
,
S.
,
2002
, “
Design and Simulation of Meshing of a Cycloidal Pump
,”
Mech. Mach. Theory
,
37
(
3
), pp.
311
332
.10.1016/S0094-114X(01)00074-X
2.
Jiang
,
Z. H.
,
Zhang
,
X. L.
, and
Liu
,
J. Q.
,
2021
, “
A Reliability Evaluation Method for RV Reducer by Combining Multi-fidelity Model and Bayesian Updating Technology
,”
IOP Conf. Ser.: Mater. Sci. Eng.
, 104
3
(5), p. 052038.10.1088/1757-899X/1043/5/052038
3.
Hsieh
,
C. F.
,
2014
, “
Dynamics Analysis of Cycloidal Speed Reducers With Pinwheel and Nonpinwheel Designs
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091008
.10.1115/1.4027850
4.
Zhu
,
C.
,
Sun
,
Z.
,
Liu
,
H.
,
Song
,
C.
, and
Gu
,
Z.
,
2015
, “
Effect of Tooth Profile Modification on Lubrication Performance of a Cycloid Drive
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
7
), pp.
785
794
.10.1177/1350650115570402
5.
Huang
,
C. H.
, and
Tsai
,
S. J.
,
2017
, “
A Study on Loaded Tooth Contact Analysis of a Cycloid Planetary Gear Reducer Considering Friction and Bearing Roller Stiffness
,”
J. Adv. Mech. Des. Syst. Manuf.
,
11
(
6
), pp.
217
231
.10.1299/jamdsm.2017jamdsm0077
6.
Ren
,
Z.-Y.
,
Mao
,
S.-M.
,
Guo
,
W.-C.
, and
Guo
,
Z.
,
2017
, “
Tooth Modification and Dynamic Performance of the Cycloidal Drive
,”
Mech. Syst. Signal Process.
,
85
, pp.
857
866
.10.1016/j.ymssp.2016.09.029
7.
Li
,
X.
,
Li
,
C.
,
Wang
,
Y.
,
Chen
,
B.
, and
Lim
,
T. C.
,
2017
, “
Analysis of a Cycloid Speed Reducer Considering Tooth Profile Modification and Clearance-Fit Output Mechanism
,”
ASME J. Mech. Des.
,
139
(
3
), p.
033303
.10.1115/1.4035541
8.
Wang
,
H.
,
Shi
,
Z.-Y.
,
Yu
,
B.
, and
Xu
,
H.
,
2019
, “
Transmission Performance Analysis of RV Reducers Influenced by Profile Modification and Load
,”
Appl. Sci.
,
9
(
19
), p.
4099
.10.3390/app9194099
9.
Xu
,
L. X.
,
Chen
,
B. K.
, and
Li
,
C. Y.
,
2019
, “
Dynamic Modelling and Contact Analysis of Bearing-Cycloid-Pinwheel Transmission Mechanisms Used in Joint Rotate Vector Reducers
,”
Mech. Mach. Theory
,
137
, pp.
432
458
.10.1016/j.mechmachtheory.2019.03.035
10.
Xu
,
L. X.
,
Zhong
,
J. L.
,
Li
,
Y.
, and
Chang
,
L.
,
2023
, “
Design and Dynamic Transmission Error Analysis of a New Type of Cycloidal-Pin Reducer With a Rotatable Output-Pin Mechanism
,”
Mech. Mach. Theory
,
181
, p.
105218
.10.1016/j.mechmachtheory.2022.105218
11.
Cao
,
D.
,
Zhu
,
C.
, and
Guo
,
P.
,
2017
, “
Dynamic Transmission Accuracy Analysis of an RV Reducer Rigid-Flexible Coupled Effect
,”
ASME
Paper No. DETC2017-67063.10.1115/DETC2017-67063
12.
Zhang
,
R.
,
Zhou
,
J.
, and
Wei
,
Z.
,
2022
, “
Study on Transmission Error and Torsional Stiffness of RV Reducer Under Wear
,”
J. Mech. Sci. Technol.
,
36
(
8
), pp.
4067
4081
.10.1007/s12206-022-0727-0
13.
Han
,
L. S.
, and
Fei
,
G.
,
2016
, “
Global Sensitivity Analysis of Transmission Accuracy for RV-Type Cycloid-Pin Drive
,”
J. Mech. Sci. Technol.
,
30
(
3
), pp.
1225
1231
.10.1007/s12206-016-0226-2
14.
Han
,
Z.
,
Wang
,
H.
,
Li
,
R.
,
Shan
,
W.
,
Zhao
,
Y.
,
Xu
,
H.
, and
Du
,
Y.
,
2024
, “
Study on Nonlinear Dynamic Characteristics of RV Reducer Transmission System
,”
Energies
,
17
(
5
), p.
1178
.10.3390/en17051178
15.
Jin
,
S. S.
,
Tong
,
X. T.
, and
Wang
,
Y. L.
, and
College of Mechanical Engineering, Zhejiang University of Technology No.288 Liuhe Road, Xihu District, Hangzhou, Zhejiang 310023, China
,
2019
, “
Influencing Factors on Rotate Vector Reducer Dynamic Transmission Error
,”
Int. J. Autom. Technol.
,
13
(
4
), pp.
545
556
.10.20965/ijat.2019.p0545
16.
Sun
,
Y. G.
,
Yu
,
G. B.
,
Zhang
,
J.
,
Wang
,
F.
,
Sun
,
Y. Q.
, and
Chen
,
J. H.
,
2013
, “
Reliability Prediction of RV Reducer Based on Fault Tree and Monte Carlo Simulation
,”
Appl. Mech. Mater.
,
274
, pp.
663
666
.10.4028/www.scientific.net/AMM.274.663
17.
Qian
,
H. M.
,
Huang
,
H. Z.
, and
Li
,
Y. F.
,
2019
, “
A Novel Single-Loop Procedure for Time-Variant Reliability Analysis Based on Kriging Model
,”
Appl. Math. Modell.
,
75
, pp.
735
748
.10.1016/j.apm.2019.07.006
18.
Qian
,
H. M.
,
Li
,
Y. F.
, and
Huang
,
H. Z.
,
2020
, “
Time-Variant Reliability Analysis for Industrial Robot RV Reducer Under Multiple Failure Modes Using Kriging Model
,”
Reliab. Eng. Syst. Saf.
,
199
, p.
106936
.10.1016/j.ress.2020.106936
19.
Yang
,
M.
,
Zhang
,
D.
,
Cheng
,
C.
, and
Han
,
X.
,
2021
, “
Reliability-Based Design Optimization for RV Reducer With Experimental Constraint
,”
Struct. Multidiscip. Optim.
,
63
(
4
), pp.
2047
2064
.10.1007/s00158-020-02781-3
20.
Wang
,
J.
,
Luo
,
S.
, and
Su
,
D.
,
2016
, “
Multi-Objective Optimal Design of Cycloid Speed Reducer Based on Genetic Algorithm
,”
Mech. Mach. Theory
,
102
, pp.
135
148
.10.1016/j.mechmachtheory.2016.04.007
21.
Qin
,
D. T.
, and
Xie
,
L. Y.
,
2011
,
Modern Mechanical Design Manual
,
Chemical Industry Press
, Beijing, China, Vol.
3
, pp.
531
596
.
22.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
,
Li
,
X.
, and
Li
,
P.
,
2014
, “
A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. Optim.
,
49
(
3
), pp.
401
416
.10.1007/s00158-013-0988-4
23.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101702
.10.1115/1.4046648
24.
Cheng
,
K.
, and
Lu
,
Z.
,
2021
, “
Adaptive Bayesian Support Vector Regression Model for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
206
, p.
107286
.10.1016/j.ress.2020.107286
25.
Wu
,
H.
,
Xu
,
Y.
,
Liu
,
Z.
,
Li
,
Y.
, and
Wang
,
P.
,
2023
, “
Adaptive Machine Learning With Physics-Based Simulations for Mean Time to Failure Prediction of Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
240
, p.
109553
.10.1016/j.ress.2023.109553
26.
Xiao
,
N. C.
,
Zuo
,
M. J.
, and
Zhou
,
C.
,
2018
, “
A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
330
338
.10.1016/j.ress.2017.09.008
27.
Zhang
,
X.
,
Zhang
,
K.
,
Yang
,
X.
,
Fazeres-Ferradosa
,
T.
, and
Zhu
,
S.-P.
,
2023
, “
Transfer Learning and Direct Probability Integral Method Based Reliability Analysis for Offshore Wind Turbine Blades Under Multi-Physics Coupling
,”
Renewable Energy
,
206
, pp.
552
565
.10.1016/j.renene.2023.02.026
28.
Oladyshkin
,
S.
, and
Nowak
,
W.
,
2012
, “
Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Saf.
,
106
, pp.
179
190
.10.1016/j.ress.2012.05.002
29.
He
,
W.
,
Zeng
,
Y.
, and
Li
,
G.
,
2020
, “
An Adaptive Polynomial Chaos Expansion for High-Dimensional Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
62
(
4
), pp.
2051
2067
.10.1007/s00158-020-02594-4
30.
McConville
,
J. B.
,
2015
,
Introduction to Mechanical System Simulation Using Adams
,
SDC Publications
, Mission, KS.
31.
Li
,
H.-S.
,
Wang
,
T.
,
Yuan
,
J.-Y.
, and
Zhang
,
H.
,
2019
, “
A Sampling-Based Method for High-Dimensional Time-Variant Reliability Analysis
,”
Mech. Syst. Signal Process.
,
126
, pp.
505
520
.10.1016/j.ymssp.2019.02.050
32.
Du
,
X.
, and
Chen
,
W.
,
2001
, “
A Most Probable Point-Based Method for Efficient Uncertainty Analysis
,”
J. Des. Manuf. Autom.
,
4
(
1
), pp.
47
66
.
33.
Li
,
X.
, and
Qiu
,
Z.
,
2020
, “
A Most Probable Point-Based Univariate Method for Reliability Evaluation of Composite Laminates With Random and Interval Parameters
,”
IEEE Trans. Reliab.
,
69
(
3
), pp.
873
886
.10.1109/TR.2019.2916262
34.
Wang
,
C.
,
Zhang
,
H.
, and
Li
,
Q.
,
2019
, “
Moment-Based Evaluation of Structural Reliability
,”
Reliab. Eng. Syst. Saf.
,
181
, pp.
38
45
.10.1016/j.ress.2018.09.006
35.
Wu
,
J.
,
Zhang
,
D.
,
Liu
,
J.
, and
Han
,
X.
,
2020
, “
A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
,”
IEEE Trans. Reliab.
,
69
(
2
), pp.
699
714
.10.1109/TR.2019.2919540
36.
Li
,
J.
, and
Chen
,
J. B.
,
2008
,
Stochastic Dynamics of Structures
,
Tongji University
, Shanghai, China.
37.
Chen
,
G.
, and
Yang
,
D.
,
2021
, “
A Unified Analysis Framework of Static and Dynamic Structural Reliabilities Based on Direct Probability Integral Method
,”
Mech. Syst. Signal Process.
,
158
, p.
107783
.10.1016/j.ymssp.2021.107783
38.
Du
,
X.
, and
Sudjianto
,
A.
,
2004
, “
First Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
,
42
(
6
), pp.
1199
1207
.10.2514/1.3877
39.
Hu
,
Z.
,
2019
,
Time-Dependent Reliability Methodologies With Saddlepoint Approximation
,
Missouri University of Science and Technology
, Rolla, MO.
40.
Wu
,
H.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Second-Order Saddlepoint Approximation
,”
ASME ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
4
), p.
041001
.10.1115/1.4047217
41.
Wu
,
H.
,
Hu
,
Z.
, and
Du
,
X.
,
2021
, “
Time-Dependent System Reliability Analysis With Second-Order Reliability Method
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031101
.10.1115/1.4048732
42.
Meng
,
D.
,
Huang
,
H.-Z.
,
Wang
,
Z.
,
Xiao
,
N.-C.
, and
Zhang
,
X.-L.
,
2014
, “
Mean-Value First-Order Saddlepoint Approximation Based Collaborative Optimization for Multidisciplinary Problems Under Aleatory Uncertainty
,”
J. Mech. Sci. Technol.
,
28
(
10
), pp.
3925
3935
.10.1007/s12206-014-0903-y
43.
Guo
,
S.
,
2014
, “
An Efficient Third-Moment Saddlepoint Approximation for Probabilistic Uncertainty Analysis and Reliability Evaluation of Structures
,”
Appl. Math. Modell.
,
38
(
1
), pp.
221
232
.10.1016/j.apm.2013.06.026
44.
Lu
,
H.
,
Cao
,
S.
,
Zhu
,
Z.
, and
Zhang
,
Y.
,
2020
, “
An Improved High Order Moment-Based Saddlepoint Approximation Method for Reliability Analysis
,”
Appl. Math. Modell.
,
82
, pp.
836
847
.10.1016/j.apm.2020.02.006
45.
Li
,
D. X.
,
1999
, “
On Default Correlation: A Copula Function Approach
,” Available at SSRN 187289.
46.
Wang
,
R.
,
Liu
,
X.
,
Hu
,
D.
, and
Mao
,
J.
,
2019
, “
Reliability Assessment for System-Level Turbine Disc Structure Using LRPIM-Based Surrogate Model Considering Multi-Failure Modes Correlation
,”
Aerosp. Sci. Technol.
,
95
, p.
105422
.10.1016/j.ast.2019.105422
47.
Sun
,
Y. T.
,
Luo
,
L. F.
,
Zhang
,
Q.
, and
Qin
,
X. R.
,
2019
, “
Reliability Analysis of Stochastic Structure With Multi-Failure Modes Based on Mixed Copula
,”
Eng. Failure Anal.
,
105
, pp.
930
944
.10.1016/j.engfailanal.2019.06.021
48.
Shields
,
M. D.
, and
Zhang
,
J.
,
2016
, “
The Generalization of Latin Hypercube Sampling
,”
Reliab. Eng. Syst. Saf.
,
148
, pp.
96
108
.10.1016/j.ress.2015.12.002
49.
Sakamoto
,
Y.
,
Ishiguro
,
M.
, and
Kitagawa
,
G.
,
1986
,
Akaike Information Criterion Statistics
,
D.
Reidel
, ed., Springer,
Dordrecht, The Netherlands
, pp.
26853
26881
.
50.
Cavanaugh
,
J. E.
, and
Neath
,
A. A.
,
2019
, “
The Akaike Information Criterion: Background, Derivation, Properties, Application, Interpretation, and Refinements
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
11
(
3
), p.
e1460
.10.1002/wics.1460
51.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
,
Wiley
,
New York
.
52.
Obilor
,
E. I.
, and
Amadi
,
E. C.
,
2018
, “
Test for Significance of Pearson's Correlation Coefficient
,”
Int J. Innovative Math. Stat. Energy Policies
,
6
(
1
), pp.
11
23
.https://www.researchgate.net/publication/323522779_Test_for_Significance_of_Pearson's_Correlation_Coefficient
You do not currently have access to this content.