Abstract

This paper presents two methods of creating model predictive control (MPC) strategies for efficient real-time control algorithms for power electronics. Two novel methods of performing nonlinear modeling are presented in this research, the first being novel Takagi-Sugeno model, which combines two linear state space models using a membership function to model the nonlinear transitions between operating points. The second method involves using sparse identification of nonlinear dynamics (SINDy), a nonlinear modeling technique that uses L1 regularization of least squares for time-series data to define a parsimonious polynomial function set. This set is used to define the input feature space to extended dynamic mode decomposition (DMD) with control. These models are then used for data-driven model predictive control of a buck switch mode power supply to find the optimal duty cycle that regulates the output voltage over a finite tuned proportional integral derivative (PID) controller. Numerical accuracy challenges are discussed, and strategies are offered for their mitigation.

References

1.
Mathew
,
S.
,
Alam
,
M.
, and
Pecht
,
M.
,
2012
, “
Identification of Failure Mechanisms to Enhance Prognostic Outcomes
,”
J. Failure Anal. Prev.
,
12
(
1
), pp.
66
73
.10.1007/s11668-011-9508-2
2.
Qazi
,
J.
,
Ikeda
,
M.
, and
Gandhi
,
T.
,
2019
, “
Failure Analysis of Capacitors and Inductors
,”
Microelectronics Failure Analysis
,
ASM International
, Materials Park, OH.
3.
Testud
,
J.
,
Richalet
,
J.
,
Rault
,
A.
, and
Papon
,
J.
,
1978
, “
Model Predictive Heuristic Control: Application to Industrial Processes
,”
Automatica
,
14
(
5
), pp.
413
428
.10.1016/0005-1098(78)90001-8
4.
Clarke
,
D. W.
,
1988
, “
Application of Generalized Predictive Control to Industrial Processes
,”
IEEE Control Syst. Mag.
,
8
(
2
), pp.
49
55
.10.1109/37.1874
5.
Geyer
,
T.
,
Papafotiou
,
G.
, and
Morari
,
M.
,
2004
, “
On the Optimal Control of Switch-Mode dc-dc Converters
,” Proceedings of Hybrid Systems: Computation and Control: 7th International Workshop,
HSCC 2004
,
Philadelphia, PA
, Mar. 25–27, pp.
342
356
.10.1007/978-3-540-24743-2_23
6.
Smarra
,
F.
,
Jain
,
A.
,
De Rubeis
,
T.
,
Ambrosini
,
D.
,
D'Innocenzo
,
A.
, and
Mangharam
,
R.
,
2018
, “
Data-Driven Model Predictive Control Using Random Forests for Building Energy Optimization and Climate Control
,”
Appl. Energy
,
226
, pp.
1252
1272
.10.1016/j.apenergy.2018.02.126
7.
Remoaldo
,
D.
, and
Jesus
,
I.
,
2021
, “
Analysis of a Traditional and a Fuzzy Logic Enhanced Perturb and Observe Algorithm for the MPPT of a Photovoltaic System
,”
Algorithms
,
14
(
1
), p.
24
.10.3390/a14010024
8.
Li
,
X.
,
Zhang
,
H.
,
Shadmand
,
M. B.
, and
Balog
,
R. S.
,
2017
, “
Model Predictive Control of a Voltage-Source Inverter With Seamless Transition Between Islanded and Grid-Connected Operations
,”
IEEE Trans. Ind. Electron.
,
64
(
10
), pp.
7906
7918
.10.1109/TIE.2017.2696459
9.
Cuk
,
S.
, and
Middlebrook
,
R. D.
,
1977
, “
A General Unified Approach to Modelling Switching DC-to-DC Converters in Discontinuous Conduction Mode
,”
1977 IEEE Power Electronics Specialists Conference
,
June 14–16, Palo Alto, CA, pp.
36
57
.10.1109/PESC.1977.7070802
10.
Corcau
,
J. I.
, and
Dinca
,
L.
,
2022
, “
Stability Studies of Power Systems for More Electric Aircraft
,” 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (
SPEEDAM
),
June 22–24, Sorrento, Italy, pp.
861
864
.10.1109/SPEEDAM53979.2022.9842040
11.
Maxim
,
A.
, and
Maxim
,
G.
,
1999
, “
A High Accuracy Power MOSFET SPICE Behavioral Macromodel Including the Device Self-Heating and Safe Operating Area Simulation
,”
APEC'99, Fourteenth Annual Applied Power Electronics Conference and Exposition, 1999 Conference Proceedings
,
Mar. 14–18, Dallas, TX, pp.
177
183
.10.1109/APEC.1999.749507
12.
Karamanakos
,
P.
,
Liegmann
,
E.
,
Geyer
,
T.
, and
Kennel
,
R.
,
2020
, “
Model Predictive Control of Power Electronic Systems: Methods, Results, and Challenges
,”
IEEE Open J. Ind. Appl.
,
1
, pp.
95
114
.10.1109/OJIA.2020.3020184
13.
Kaiser
,
E.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2018
, “
Sparse Identification of Nonlinear Dynamics for Model Predictive Control in the Low-Data Limit
,”
Proc. R. Soc. A
,
474
(
2219
), p.
20180335
.10.1098/rspa.2018.0335
14.
Korda
,
M.
,
Putinar
,
M.
, and
Mezić
,
I.
,
2020
, “
Data-Driven Spectral Analysis of the Koopman Operator
,”
Appl. Comput. Harmonic Anal.
,
48
(
2
), pp.
599
629
.10.1016/j.acha.2018.08.002
15.
Proctor
,
J. L.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2016
, “
Dynamic Mode Decomposition With Control
,”
SIAM J. Appl. Dyn. Syst.
,
15
(
1
), pp.
142
161
.10.1137/15M1013857
16.
Wang
,
J.
,
Xu
,
B.
,
Lai
,
J.
,
Wang
,
Y.
,
Hu
,
C.
,
Li
,
H.
, and
Song
,
A.
,
2023
, “
An Improved Koopman-MPC Framework for Data-Driven Modeling and Control of Soft Actuators
,”
IEEE Rob. Autom. Lett.
,
8
(
2
), pp.
616
623
.10.1109/LRA.2022.3229235
17.
Babaei
,
E.
,
Mahmoodieh
,
M. E. S.
, and
Mahery
,
H. M.
,
2012
, “
Operational Modes and Output-Voltage-Ripple Analysis and Design Considerations of Buck–Boost DC–DC Converters
,”
IEEE Trans. Ind. Electron.
,
59
(
1
), pp.
381
391
.10.1109/TIE.2011.2134056
18.
Lee
,
N.
,
Azarian
,
M. H.
, and
Pecht
,
M. G.
,
2020
, “
An Explainable Deep Learning-Based Prognostic Model for Rotating Machinery
,” preprint
arXiv:2004.13608
.10.48550/arXiv.2004.13608
You do not currently have access to this content.