The response-frequency relationship in the vicinity of a resonant frequency, the occurrence of travelling wave response and the presence of internal resonances are investigated for simply supported, circular cylindrical shells. Donnell’s nonlinear shallow-shell theory is used. The boundary conditions on radial displacement and the continuity of circumferential displacement are exactly satisfied. The problem is reduced to a system of four ordinary differential equations by means of the Galerkin method. The radial deflection of the shell is expanded by using a basis of four linear modes. The effect of internal fluid is also investigated. The equations of motion are studied by using a code based on the Collocation Method. The present model is validated by comparison of some results with others available. A water-filled shell presenting the phenomenon of 1:1:1:2 internal resonances is investigated for the first time; it shows intricate and interesting dynamics. [S0739-3717(00)01204-6]

1.
Amabili
,
M.
,
Pellicano
,
F.
, and
Pai¨doussis
,
M. P.
,
1998
, “
Nonlinear Vibrations of Simply Supported, Circular Cylindrical Shells, Coupled to Quiescent Fluid
,”
J. Fluids Struct.
,
12
, pp.
883
918
.
2.
Chen
,
J. C.
, and
Babcock
,
C. D.
,
1975
, “
Nonlinear Vibration of Cylindrical Shells
,”
AIAA J.
,
13
, pp.
868
876
.
3.
Evensen, D. A., 1967, “Nonlinear Flexural Vibrations of Thin-Walled Circular Cylinders,” NASA TN D-4090.
4.
Dowell
,
E. H.
, and
Ventres
,
C. S.
,
1968
, “
Modal Equations for the Nonlinear Flexural Vibrations of a Cylindrical Shell
,”
Int. J. Solids Struct.
,
4
, pp.
975
991
.
5.
Ginsberg
,
J. H.
,
1973
, “
Large Amplitude Forced Vibrations of Simply Supported Thin Cylindrical Shells
,”
J. Appl. Mech.
,
40
, pp.
471
477
.
6.
Ganapathi
,
M.
, and
Varadan
,
T. K.
,
1996
, “
Large Amplitude Vibrations of Circular Cylindrical Shells
,”
J. Sound Vib.
,
192
, pp.
1
14
.
7.
Gonc¸alves
,
P. B.
, and
Batista
,
R. C.
,
1988
, “
Non-Linear Vibration Analysis of Fluid-Filled Cylindrical Shells
,”
J. Sound Vib.
,
127
, pp.
133
143
.
8.
Amabili
,
M.
,
Pellicano
,
F.
, and
Pai¨doussis
,
M. P.
,
1999
, “
Non-linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part I: Stability
,”
J. Sound Vib.
,
225
, pp.
655
699
.
9.
Amabili
,
M.
,
Pellicano
,
F.
, and
Pai¨doussis
,
M. P.
,
1999
, “
Non-linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part II: Large Amplitude Vibrations Without Flow
,”
J. Sound Vib.
,
228
, pp.
1103
1124
.
10.
Amabili, M., Pellicano, F., and Pai¨doussis, M. P., 2000, “Non-linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part III: Truncation Effect Without Flow and Experiments,” J. Sound Vib., (to be published).
11.
Amabili, M., Pellicano, F., and Pai¨doussis, M. P., 2000, “Non-linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part IV: Large-Amplitude Vibrations with Flow,” J. Sound Vib., (to be published).
12.
Ibrahim
,
R. A.
,
1976
, “
Multiple Internal Resonance in a Structure-Liquid System
,”
ASME J. Eng. Ind.
,
98
, pp.
1092
1098
.
13.
Boyarshina
,
L. G.
,
1984
, “
Resonance Effects in the Nonlinear Vibrations of Cylindrical Shells Containing a Liquid
,”
Sov. Appl. Mech.
,
20
, pp.
765
770
.
14.
Nayfeh
,
A. H.
, and
Raouf
,
R. A.
,
1987
, “
Non-Linear Oscillation of Circular Cylindrical Shells
,”
Int. J. Solids Struct.
,
23
, pp.
1625
1638
.
15.
Ginsberg
,
J. H.
,
1975
, “
Multi-Dimensional Non-Linear Acoustic Wave Propagation. Part II: The Non-Linear Interaction of an Acoustic Fluid and Plate Under Harmonic Excitation
,”
J. Sound Vib.
,
40
, pp.
359
379
.
16.
Lakis
,
A. A.
, and
Laveau
,
A.
,
1991
, “
Non-Linear Dynamic Analysis of Anisotropic Cylindrical Shells Containing a Flowing Fluid
,”
Int. J. Solids Struct.
,
28
, pp.
1079
1094
.
17.
Amabili
,
M.
,
1996
, “
Free Vibration of Partially Filled, Horizontal Cylindrical Shells
,”
J. Sound Vib.
,
191
, pp.
757
780
.
18.
Wolfram, S., 1996, The Mathematica Book, 3rd ed., Cambridge University Press, Cambridge, UK.
19.
Nayfeh
,
T.
, and
Vakakis
,
A. F.
,
1994
, “
Subharmonic Travelling Waves in a Geometrically Nonlinear Plate
,”
Int. J. Non-Linear Mech.
,
29
, pp.
233
246
.
20.
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B., and Wang, X., 1998, Auto97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), Concordia University, Montreal, Canada.
You do not currently have access to this content.