It is commonplace in academia to base models of constrained-layer damping treatments on the assumption that the facesheets displace identically during transverse vibrations. This assumption is valid for a large range of problems, particularly for problems common in the era when damping was achieved by applying foil-backed treatments to thin panels. The authors show using a very simple example that oversimplified modeling can skew distributions of modal strain energy, a common indicator of damping. [S0739-3717(00)00204-X]

1.
Austin
,
E. M.
,
1999
, “
Variations on Modeling of Constrained-Layered Damping Treatments
,”
Shock Vibr. Dig.
,
31
, No.
4
, pp.
275
280
.
2.
Kerwin
,
E. M.
,
1959
, “
Damping of Flexural Waves by a Constrained Visco-Elastic Layer
,”
J. Acoust. Soc. Am.
,
31
, pp.
952
962
.
3.
DiTaranto
,
R. A.
,
1965
, “
Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams.
ASME J. Appl. Mech.
,
32
, pp.
881
886
.
4.
Mead
,
D. J.
, and
Markus
,
S.
,
1969
, “
The Forced Vibration of a Three-Layer, Damped Sandwich Beam with Arbitrary Boundary Conditions
,”
ASME J. Vibr. Acoust.
,
10
, No.
2
, pp.
163
175
.
5.
Nakra
,
B. C.
,
1976
, “
Vibration Control With Viscoelastic Materials
,”
Shock Vibr. Dig.
,
8
, No.
6
, pp.
3
12
.
6.
Nakra
,
B. C.
,
1981
, “
Vibration Control With Viscoelastic Materials-II
,”
Shock Vibr. Dig.
,
13
, No.
1
, pp.
17
20
.
7.
Nakra
,
B. C.
,
1984
, “
Vibration Control With Viscoelastic Materials-III
,”
Shock Vibr. Dig.
,
16
, No.
5
, pp.
17
22
.
8.
Torvik, P. J., 1980, “The Analysis and Design of Constrained Layer Damping Treatments,” Proceedings ASME Winter Annual Meeting—Damping Applications for Vibration Control, pp. 85–112.
9.
Mead
,
D. J.
,
1982
, “
A Comparison of Some Equations for the Flexural Vibration of Damped Sandwich Beams
,”
J. Sound Vib.
,
83
, No.
3
, pp.
363
377
.
10.
Douglas
,
B. E.
, and
Yang
,
J. C. S.
,
1978
, “
Transverse Compressional Damping in the Vibratory Response of Elastic-Viscoelastic-Elastic Beams
,”
AIAA J.
,
16
, No.
9
, pp.
925
930
.
11.
Ungar
,
E. E.
, and
Kerwin
,
E. M.
,
1962
, “
Loss Factors of Visoelastic Systems in Terms of Energy Concepts
,”
J. Acoust. Soc. Am.
,
34
, pp.
954
957
.
12.
Johnson
,
C. D.
,
Kienholz
,
D. A.
, and
Rogers
,
L. C.
,
1981
, “
Finite Element Prediction of Damping in Beams With Constrained Viscoelastic Layers
,”
Shock Vibr. Bul.
,
51
, No.
1
, pp.
71
81
.
13.
Ikegami, R., Beck, C. J., and Walker, W. J., 1984, “Application of Damping to Improve Reliability of IUS-Type Satellite Equipment—RELSAT Program,” Vibration Damping 1984 Workshop Proceedings, pp. TT1–TT15.
14.
Staley, J. A., and Stahle, C. V., 1984, “Damping in Support Structures for Satellite Equipment Reliability—RELSAT,” Vibration Damping 1984 Workshop Proceedings, pp. UU1–UU26.
15.
Johnson
,
C. D.
,
1995
, “
Design of Passive Damping Systems
,”
J. Mech. Design. J. Vibr. Acoust.
,
117
(B)
, pp.
171
176
, ASME 50th Anniversary of the Design Engineering Division.
16.
Miles, R. N., 1984, “Beam Dampers for Skin Vibration and Noise Reduction in the 747,” Vibration Damping 1984 Workshop Proceedings, pp. PP1–PP18.
17.
Saito
,
H.
, and
Tani
,
H.
,
1984
, “
Vibrations of Bonded Beams With a Single Lap Adhesive Joint
,”
J. Sound Vib.
,
92
, No.
2
, pp.
299
309
.
18.
Rao
,
M. D.
, and
He
,
S.
,
1992
, “
Vibration Analysis of Adhesively Bonded Lap Joint, Part II: Numerical Solution
,”
J. Sound Vib.
,
153
, No.
3
, pp.
417
425
.
19.
Garrison
,
M. R.
,
Miles
,
R. N.
,
Sun
,
J. Q.
, and
Bao
,
W.
,
1994
, “
Random Response of a Plate Partially Covered by a Constrained Layer Damper
,”
J. Sound Vib.
,
172
, No.
2
, pp.
231
245
.
20.
Taylor
,
T. W.
, and
Nayfeh
,
A. H.
,
1994
, “
Natural Frequencies of Thick, Layered Composite Plates
,”
Composites Eng.
,
4
, No.
10
, pp.
1011
1021
.
21.
Lee
,
B.-C.
, and
Kim
,
K.-J.
,
1997
, “
Effects of Normal Strain in Core Material on Modal Property of Sandwich Plates
,”
ASME J. Vibr. Acoust.
,
119
, pp.
493
503
.
22.
Miles
,
R. N.
, and
Reinhall
,
P. G.
,
1986
, “
An Analytical Model for the Vibration of Laminated Beams Including the Effects of Both Shear and Thickness Deformation in the Adhesive Layer
,”
J. Sound Vib.
,
108
, pp.
56
64
.
23.
Austin, E. M., 1998, “Influences of Higher Order Modeling Techniques on the Analysis of Layered Viscoelastic Damping Treatments,” Ph.D. thesis, Virginia Polytechnic Institute and State University.
24.
Morgenthaler, D. R., 1991, “The Absolute Value Modal Strain Energy Method,” Damping ’91, Vol. II, pp. FDB1–FDB16.
25.
Austin, E. M., and Inman, D. J., 1998, “Modeling of Sandwich Structures,” SPIE’s 5th Annual International Symposium on Smart Structures and Materials, Vol. 3327, Passive Damping and Isolation.
26.
Baz
,
A.
, and
Ro
,
J.
,
1995
, “
Optimum Design and Control of Active Constrained Layer Damping
,”
J. Mech. Design J. Vibr. Acoust.
,
117
(B)
, pp.
135
144
, ASME 50th Anniversary Design Engineering Division.
27.
Reddy, J. N., 1993, An Introduction to the Finite Element Method, 2nd ed., McGraw-Hill.
28.
Robbins
,
D. H.
, and
Reddy
,
J. N.
,
1993
, “
Modelling of Thick Composites Using A Layerwise Laminate Theory
,”
Int. J. Numer. Methods Eng.
,
36
, No.
4
, pp.
655
677
.
29.
Pagano
,
N. J.
,
1969
, “
Exact Solutions for Composite Laminates in Cylindrical Bending
,”
J. Compos. Mater.
,
3
, pp.
398
411
.
30.
Sperling, L. H., 1992, Introduction to Physical Polymer Science, 2nd ed., Wiley, New York.
You do not currently have access to this content.