A simple pendulum whose pivot executes harmonic motion in the vertical direction is a prototype for systems subjected to parametric excitation. Forced excitation of this system is represented as a harmonically varying torque whose frequency is taken to be arbitrary. The investigation explores whether, for specified values of the natural frequency and the excitation frequency, it is possible to select an amplitude and frequency for the parametric excitation such that the pendulum’s vibratory rotation is reduced. The analysis supplements numerical integration of the equation of motion with a Fourier series analysis suitable to situations where the parametric frequency is a multiple of the forcing frequency. Studies of the behavior for excitation frequencies close to, and far from, the natural frequency lead to a general guideline for selecting the parametric excitation. It is shown that, with judicious selection of the parametric amplitude, a parametric frequency that is very high relative to the highest contemplated excitation frequency can substantially reduce the forced response at any lower excitation frequency.

1.
Hirsch
,
P.
,
1930
, “
Das Pendel mit oszillierendem Aufhangepunkt
,”
Z. Angew. Math. Mech.
,
10
, pp.
41
52
.
2.
Sethna, P. R., and Hemp, G. W., 1965, “Nonlinear Oscillations of a Gyroscopic Pendulum with an Oscillating Point of Suspension,” Les Vibrations Force´es dans les Syste`mes Non-Line´aires, Center National de la Recherche Scientifique, Paris, pp. 375–391.
3.
Ness
,
D. J.
,
1967
, “
Small Oscillations of a Stabilized, Inverted Pendulum
,”
Am. J. Phys.
,
35
, pp.
964
967
.
4.
Meirovitch, L., 1970, Methods of Analytical Dynamics, McGraw Hill, New York.
5.
Troger
,
H.
,
1975
, “
Bemerkungen zum Pendel mit oszillierendem Aufhangepunkt
,”
Z. Angew. Math. Mech.
,
55
, pp.
68
69
.
6.
Jordan, D. W., and Smith, P., 1987, Nonlinear Ordinary Differential Equations, Clarendon Press, Oxford.
7.
Skalak
,
R.
, and
Yarymovych
,
M. I.
,
1960
, “
Subharmonic Oscillations of a Pendulum
,”
ASME J. Appl. Mech.
,
27
, pp.
159
164
.
8.
Struble
,
R. A.
,
1963
, “
On the Subharmonic Oscillations of a Pendulum
,”
ASME J. Appl. Mech.
,
30
, pp.
301
303
.
9.
Dugundji
,
J.
, and
Chhatpar
,
C. K.
,
1970
, “
Dynamic Stability of a Pendulum Under Parametric Excitation
,”
Rev. Roum. Sci. Tech., Ser. Mec. Appl.
,
15
, No.
4
, pp.
741
763
.
10.
Chester
,
W.
,
1975
, “
The Forced Oscillations of a Simple Pendulum
,”
J. Inst. Math. Appl.
,
15
, pp.
289
306
.
11.
Cartmell, M., 1990, Introduction to Linear, Parametric and Nonlinear Vibrations, Chapman and Hall, London, New York, Tokyo, Melbourne, Madras.
12.
Frolov, K. V., 1967, “Parametric and Autoparametric Oscillations of some Nonlinear Mechanical Systems,” Proceedings of the 4th Conference on Nonlinear Oscillations, pp. 327–336.
13.
Hsu
,
C. S.
, and
Cheng
,
W.-H.
,
1974
, “
Steady-State Response of a Dynamical System Under Combined Parametric and Forcing Excitations
,”
ASME J. Appl. Mech.
,
41
, pp.
371
378
.
14.
Ness
,
D. J.
,
1971
, “
Resonance Classification in a Cubic System
,”
ASME J. Appl. Mech.
,
38
, pp.
585
590
.
15.
Nguyen
,
D. V.
,
1975
, “
Interaction Between Parametric and Forced Oscillations in Multidimensional Systems
,”
J. Tech. Phys.
,
16
, pp.
213
225
.
16.
Troger
,
H.
, and
Hsu
,
C. S.
,
1977
, “
Response of a Nonlinear System Under Combined Parametric and Forcing Excitation
,”
ASME J. Appl. Mech.
,
44
, pp.
179
181
.
17.
HaQuang
,
N.
,
Mook
,
D. T.
, and
Plaut
,
R. H.
,
1987
, “
Non-Linear Structural Vibrations Under Combined Parametric and External Excitations
,”
J. Sound Vib.
,
118
, No.
2
, pp.
291
306
.
18.
HaQuang
,
N.
,
Mook
,
D. T.
, and
Plaut
,
R. H.
,
1987
, “
A Non-Linear Analysis of the Interactions Between Parametric and External Excitations
,”
J. Sound Vib.
,
118
, No.
3
, pp.
425
439
.
19.
Plaut
,
R. H.
,
Gentry
,
J. J.
, and
Mook
,
D. T.
,
1990
, “
Non-Linear Structural Vibrations Under Combined Multi-Frequency Parametric and External Excitations
,”
J. Sound Vib.
,
140
, No.
3
, pp.
381
390
.
You do not currently have access to this content.