The objective of this paper is to formulate the equations of motion and to investigate the vibrations of the atomic force microscope (AFM), which is divided into the contact and noncontact types. First, the governing equations of the AFM including both base oscillator and piezoelectric actuator are obtained using Hamilton’s principle. In the dynamic analysis, the piezoelectric layer is treated as a sensor to measure the deflection and as an actuator to excite the AFM via an external voltage. The repulsive force and van der Waals (vdW) force are considered in the contact and noncontact types of the AFM, respectively. Some important observations are made from the governing equations and boundary conditions. Finally, numerical results using a finite element method are provided to illustrate the excitation effects of base oscillator and piezoelectric actuator on the dynamic responses.

1.
Binning
,
G.
,
Quate
,
C. F.
, and
Gerber
,
Ch.
,
1986
, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
,
56
, pp.
930
933
.
2.
Alexander
,
S.
,
Hellemans
,
L.
,
Marti
,
O.
,
Schneri
,
J.
,
Elings
,
V.
,
Hansma
,
P. K.
,
Longmire
,
M.
, and
Gurely
,
J.
,
1989
, “
An Atomic-Resolution Atomic-Force Microscope Implemented Using an Optical Lever
,”
J. Appl. Phys.
,
65
, pp.
164
167
.
3.
Itoh
,
T.
, and
Suga
,
T.
,
1994
, “
Piezoelectric Sensor for Detecting Force Gradients in Atomic Force Microscopy
,”
Jpn. J. Appl. Phys., Part 1
,
33
, pp.
334
340
.
4.
Itoh
,
T.
, and
Suga
,
T.
,
1994
, “
Piezoelectric Force Sensor for Scanning Force Microscopy
,”
Sens. Actuators A
,
43
, pp.
305
310
.
5.
Itoh
,
T.
, and
Suga
,
T.
,
1996
, “
Self-Excited Force-Sensing Microcantilevers with Piezoelectric Thin Films for Dynamic Scanning Force Microscopy
,”
Sens. Actuators A
,
54
, pp.
477
481
.
6.
Basso
,
M.
,
Giarre
,
L.
,
Dahleh
,
M.
, and
Mezic
,
I.
,
2000
, “
Complex Dynamics in a Harmonically Excited Lennard-Jones Oscillator: Microcantilever-Sample Interaction in Scanning Probe Microscopes
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
240
245
.
7.
Ashhab
,
M.
,
Salapaka
,
M. V.
,
Dahleh
,
M.
, and
Mezic
,
I.
,
1999
, “
Dynamical Analysis and Control of Microcantilever
,”
Automatica
,
35
, pp.
1663
1670
.
8.
Israelachvili, J. N., 1985, Intermolecular and Surface Forces, Academic Press, New York.
9.
Cappella
,
B.
, and
Dietler
,
G.
,
1999
, “
Force-Distance Curve by Atomic Force Microscopy
,”
Surf. Sci. Rep.
,
34
, pp.
1
104
.
10.
Fung
,
R. F.
,
Huang
,
J. S.
, and
Jan
,
S. C.
,
2000
, “
Dynamic Analysis of a Piezothermoelastic Resonator with Various Shapes
,”
ASME J. Vibr. Acoust.
,
122
, pp.
244
253
.
11.
Reddy, J. N., 1993, An Introduction to The Finite Element Method, McGraw-Hill, New York.
12.
Spyrakos, C. C., 1994, Finite Element Modeling in Engineering Practice, West Virginia University Press, Morgantown, WV.
You do not currently have access to this content.