In this paper, the rotating flexible-Timoshenko-shaft/flexible-disk coupling system is formulated by applying the assumed-mode method into the kinetic and strain energies, and the virtual work done by the eddy-current damper. From Lagrange’s equations, the resulting discretized equations of motion can be simplified as a bilinear system (BLS). Introducing the control laws, including the quadratic, nonlinear and optimal feedback control laws, into the BLS, it is found that the eddy-current damper can be used to suppress flexible and shear vibrations simultaneously, and the system is globally asymptotically stable. Numerical results are provided to validate the theoretical analysis.

1.
Fung
,
R. F.
, and
Hsu
,
S. M.
,
2000
, “
Dynamic Formulations and Energy Analysis of Rotating Flexible-Shaft/Multi-Flexible-Disk System with Eddy-Current Brake
,”
ASME J. Vibr. Acoust.
,
22
, pp.
365
375
.
2.
Nagaya
,
K.
,
Kojima
,
H.
,
Karube
,
Y.
, and
Kibayashi
,
H.
,
1984
, “
Braking Forces and Damping Coefficients of Eddy Current Brakes Consisting of Cylindrical Magnets and Plate Conductors of Arbitrary Shape
,”
IEEE Trans. Magn.
,
20
(
6
), pp.
2136
2145
.
3.
Kligerman
,
Y.
, and
Gottlieb
,
O.
,
1998
, “
Dynamics of a Rotating System with a Nonlinear Eddy-Current Damper
,”
ASME J. Vibr. Acoust.
,
120
, pp.
848
853
.
4.
Mohler, R. R., 1991, Nonlinear Systems: Volume II, Applications to Bilinear Control, Prentice Hall.
5.
Derese
,
I.
, and
Noldus
,
E.
,
1980
, “
Design of Linear Feedback Laws for Bilinear Systems
,”
Int. J. Control
,
31
, pp.
219
237
.
6.
Gutman
,
P. O.
,
1981
, “
Stabilizing Controllers for Bilinear Systems
,”
IEEE Trans. Autom. Control
,
26
(
4
), pp.
917
922
.
7.
Jacobsen, D. H., 1979, Extensions of Linear-Quadratic Control, Optimization and Matrix Theory, Academic press.
8.
Cebuhar
,
W. A.
, and
Costanza
,
V.
,
1984
, “
Approximation Procedures for the Optimal Control of Bilinear and Nonlinear Systems
,”
J. Optim. Theory Appl.
,
43
(
4
), pp.
615
627
.
9.
Benallou
,
D.
,
Mellichamp
,
D. A.
, and
Seborg
,
D. E.
,
1988
, “
Optimal Stabilizing Controllers for Bilinear Systems
,”
Int. J. Control
,
48
(
4
), pp.
1487
1501
.
10.
Chen
,
M. S.
,
1998
, “
Exponential Stabilization of a Constrained Bilinear System
,”
Automatica
,
34
(
8
), pp.
989
992
.
11.
Lewis, F. L., and Syrmos, V. L., 1995, Optimal Control, Wiley, New York.
12.
Bryson, A. E, Jr., and Ho, Y. C., 1975, Applied Optimal Control, Wiley, New York.
13.
Jia
,
H. S.
,
1999
, “
On the Bending Coupled Natural Frequencies of a Spinning, Multispan Timoshenko Shaft Carrying Elastic Disks
,”
J. Sound Vib.
,
221
(
4
), pp.
623
649
.
You do not currently have access to this content.