This paper is concerned with a study of the influence of a time delay occurring in a PD feedback control on the dynamic stability of a rotor suspended by magnetic bearings. In the presence of geometric coordinate coupling and time delay, the equations of motion governing the response of the rotor are a set of two-degree-of-freedom nonlinear differential equations with time delay coupling in nonlinear terms. It is found that as the time delay increases beyond a critical value, the equilibrium position of the rotor motion becomes unstable and may bifurcate into two qualitatively different kinds of periodic motion. The resultant Hopf bifurcation is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. Based on the reduction of the infinite dimensional problem to the flow on a four-dimensional center manifold, the bifurcating periodic solutions are investigated using a perturbation method.

1.
Laier
,
D.
, and
Markert
,
R.
, 1996, “
Nonlinear Oscillations of Magnetically Suspended Rotors
,”
Proc. of Second European Nonlinear Oscillations Conference
, Academy of Science of the Czech Republic,
Prague
, Vol.
I
, pp.
239
242
.
2.
Steinschaden
,
N.
, and
Springer
,
H.
, 1999, “
Some Nonlinear Effects of Magnetic Bearings
,”
Proc. of 1999 ASME Design Engineering Technical Conference
,
Las Vegas
, Sept. 12–16,
ASME
, New York, ASME Paper No. DEC99/VIB-8063.
3.
Virgin
,
L. N.
,
Walsh
,
T. F.
, and
Knight
,
J. D.
, 1995, “
Nonlinear Behaviour of a Magnetic Bearing System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
582
588
.
4.
Chinta
,
M.
, and
Palazzolo
,
A. B.
, 1998, “
Stability and Bifurcation of Rotor Motion in a Magnetic Bearing
,”
J. Sound Vib.
0022-460X,
214
(
5
), pp.
793
803
.
5.
Lawen
,
J. L.
, and
Flowers
,
G. T.
, 1997, “
Synchronous Dynamics of a Coupled Shaft Bearing Housing System With Auxiliary Support From a Clearance Bearing: Analysis and Experiment
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
(
2
), pp.
430
435
.
6.
Wang
,
X.
, and
Noah
,
S.
, 1998, “
Nonlinear Dynamics of a Magnetically Supported Rotor on Safety Auxiliary Bearings
,”
ASME J. Vibr. Acoust.
0739-3717,
120
(
2
), pp.
596
606
.
7.
Xie
,
H.
,
Flowers
,
G. T.
,
Feng
,
L.
, and
Lawrence
,
C.
, 1999, “
Steady-State Dynamic Behaviour of a Flexible Rotor With Auxiliary Support From a Clearance Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
121
(
1
), pp.
78
83
.
8.
Kirk
,
R. G.
, 1999, “
Evaluation of AMB Turbomachinery Auxiliary Bearings
,”
ASME J. Vibr. Acoust.
0739-3717,
121
(
2
), pp.
156
161
.
9.
Chinta
,
M.
,
Palazzolo
,
A. B.
, and
Kascak
,
A.
, 1996, “
Quasi-Periodic Vibration of a Rotor in Magnetic Bearing With Geometric Coupling
,”
Proc. of Fifth International Symposium on Magnetic Bearings
,
Kanazawa University
, Kanazawa, pp.
147
152
.
10.
Knight
,
J. D.
,
Xia
,
Z.
, and
McCaul
,
E. B.
, 1992, “
Forces in Magnetic Journal Bearings: Nonlinear Computation and Experimental Measurement
,”
Proc. of Third Int. Symp. on Magnetic Bearings
,
Alexandria
, VA, Technomic Pub Co, Lancaster, pp.
441
450
.
11.
Schweitzer
,
G.
,
Bleuler
,
H.
, and
Traxler
,
A.
, 1994,
Active Magnetic Bearings, Basics, Properties and Application of Active Magnetic Bearings
,
Verlag der Fachvereine (vdf)
, ETH-Zurich.
12.
Bajaj
,
A. K.
, 1982, “
Bifurcating Periodic Solutions in Rotationally Symmetric Systems
,”
SIAM J. Appl. Math.
0036-1399,
42
(
5
), pp.
1078
1098
.
13.
Hassard
,
B. D.
,
Kazarinoff
,
N. D.
, and
Wan
,
Y. H.
, 1981,
Theory and Applications of Hopf Bifurcations
,
Cambridge University Press
, Cambridge.
14.
Hale
,
J.
, 1977,
Theory of Functional Differential Equations
,
Springer-Verlag
, New York.
15.
Hale
,
J. K.
, and
Verduyn Lunel
,
S. M.
, 1993,
Introduction to Functional Differential Equations
,
Springer-Verlag
, New York.
16.
Halanay
,
A.
, 1966,
Differential Equations, Stability, Oscillations, Time Lags
,
Academic Press
, New York.
17.
Kalmar-Nagy
,
T.
,
Stepan
,
G.
, and
Moon
,
F. C.
, 2001, “
Subcritical Hopf bifurcations in the Delay Equation Model for Machine Tool Vibrations
,”
Nonlinear Dyn.
0924-090X,
26
, pp.
121
142
.
18.
Gilsinn
,
D.
, 2002, “
Estimating Critical Hopf Bifurcation Parameters for a Second-Order Delay Differential Equation With Application to Machine Tool Chatter
,”
Nonlinear Dyn.
0924-090X,
30
, pp.
103
154
.
19.
Campbell
,
S. A.
,
Belair
,
J.
,
Ohira
,
T.
, and
Milton
,
J.
, 1995, “
Limit, Cycles, Tori, and Complex Dynamics in a Second-Order Differential Equation With Delayed Negative Feedback
,”
J. Dyn. Differ. Equ.
1040-7294,
7
(
1
), pp.
213
236
.
20.
Fofana
,
M. S.
, and
Ryba
,
P. B.
, 2004, “
Parametric Stability of Nonlinear Time Delay Equations
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
79
91
.
21.
Buono
,
P.-L.
, and
LeBlanc
,
V. G.
, 2003, “
Versal Unfoldings for Linear Retarded Functional Differential Equations
,”
Diff. Eq.
0012-2661,
193
, pp.
307
342
.
22.
Yu
,
P.
, 1998, “
Computation of Normal Forms Via a Perturbation Technique
,”
J. Sound Vib.
0022-460X,
211
(
1
), pp.
19
38
.
23.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
, New York.
You do not currently have access to this content.