Multiribbed serpentine belt drive systems are widely adopted in accessory drive automotive applications due to the better performances relative to the flat or V-belt drives. Nevertheless, they can generate unwanted noise and vibration which may affect the correct functionality and the fatigue life of the belt and of the other components of the transmission. The aim of the paper is to analyze the effect of the shear deflection in the rubber layer between the pulley and the belt fibers on the rotational dynamic behavior of the transmission. To this end the Firbank’s model has been extended to cover the case of small amplitude vibrations about mean rotational speeds. The model evidences that the shear deflection can be accounted for by an elastic term reacting to the torsional oscillations in series with a viscous term that dominates at constant speed. In addition, the axial deformation of the belt spans are taken into account. The numerical model has been validated by the comparison with the experimental results obtained on an accessory drive transmission including two pulleys and an automatic tensioner. The results show that the first rotational modes of the system are dominated by the shear deflection of the belt.

1.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
2.
Bechtel
,
S. E.
,
Vohra
,
S.
,
Jacob
,
K. I.
, and
Carlson
,
C. D.
, 2000, “
The Stretching and Slipping of Belts and Fibers on Pulleys
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
197
206
.
3.
Rubin
,
M. B.
, 2000, “
An Exact Solution for Steady Motion of an Extensible Belt in Multipulley Belt Drive System
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
311
316
.
4.
Firbank
,
T. C.
, 1970, “
Mechanics of the Belt Drive
,”
Int. J. Mech. Sci.
0020-7403,
12
, pp.
1053
1063
.
5.
Childs
,
T. H.
and
Parker
,
J. E.
, 1989, “
Power Transmission by Flat, V and Timing Belts
,” in
Tribological Design of Machine Elements
,
T. S.
Leeds-Lyon
, ed., Leeds-Lyon
15
,
Tribology Series No. 14
,
Elsevier
,
Amsterdam
, pp.
133
142
.
6.
Alciatore
,
D. G.
, and
Traver
,
A. E.
, 1995, “
Multipulley Belt Drive Mechanics: Creep Theory Vs Shear Theory
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
506
511
.
7.
Gerbert
,
G.
, 1991, “
On Flat Belt Slip
,”
Proceedings of the 17th Leeds-Lyon Symposium on Tribology
, Tribology Series 16,
Elsevier
,
Amsterdam
, pp.
333
339
.
8.
Gerbert
,
G.
, 1996, “
Belt Slip-a Unified Approach
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
432
438
.
9.
Gerbert
,
B. G.
, 1972, “
Force and Slip Behavior in V-Belt Drives
,”
Acta Polytech. Scand.
,
67
, pp.
9
101
.
10.
Gerbert
,
B. G.
, 1975, “
Pressure Distribution and Belt Deformation in V-Belt Drives
,”
ASME J. Eng. Ind.
, pp.
976
982
.
11.
Gerbert
,
B. G.
, 1975, “
Tensile Stress Distribution in the Cord of V-Belts
,”
ASME J. Eng. Ind.
, pp.
14
22
.
12.
Gerbert
,
G.
, 1976, “
A Note on Slip in V-Belt Drives
,”
ASME J. Eng. Ind.
, pp.
1366
1368
.
13.
Gerbert
,
B. G.
, 1981, “
Some Notes on V-Belt Drives
,”
ASME J. Mech. Des.
1050-0472,
103
, pp.
8
18
.
14.
Gerbert
,
G.
, and
de Maré
,
J.
, 1996, “
Belt Number Factor in Multiple V-Belt Drives
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
347
352
.
15.
Hansson
,
H.
, 1990, “
Geometry Conditions for Good Power Capacity in a V-Ribbed Belt Drive
,”
ASME J. Mech. Des.
1050-0472,
112
, pp.
437
441
.
16.
Ulsoy
,
G.
,
Whitsel
,
J. E.
, and
Hooven
,
M. D.
, 1985, “
Design of Belt-Tensioner Systems for Dynamic Stability
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
107
, pp.
282
290
.
17.
Hwang
,
S. J.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
, 1994, “
Rotational Response and Slip Prediction of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
116
, pp.
71
78
.
18.
Leamy
,
M. J.
, and
Perkins
,
N. C.
, 1998, “
Nonlinear Periodic Response of Engine Accessory Drives with Dry Friction Tensioners
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
909
916
.
19.
Beikmann
,
R. S.
,
Perkins
N. C.
, and
Ulsoy
A. G.
, 1996, “
Free Vibration of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
406
413
.
20.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
A. G.
, 1996, “
Nonlinear Coupled Vibration Response of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
567
574
.
21.
Zhang
,
L.
, and
Zu
J. W.
, 1999, “
Modal Analysis of Serpentine Belt Drive System
,”
J. Sound Vib.
0022-460X,
222
(
2
), pp.
259
279
.
22.
Zhang
L.
, and
Zu
J. W.
, 2000, “
One-to-One Auto-Parametric Resonance in Serpentine Belt Drive Systems
,”
J. Sound Vib.
0022-460X,
232
(
4
), pp.
783
806
.
23.
Zhang
L.
, and
Zu
J. W.
, 2001, “
Complex Modal Analysis of Non-Self-Adjoint Hybrid Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
123
, pp.
150
156
.
24.
Sack
,
R. A.
, 1954, “
Transverse Oscillations in Traveling Strings
,”
Br. J. Appl. Phys.
0508-3443,
5
, pp.
224
226
.
25.
Wikert
,
J. A.
, and
Mote
C. D.
, 1990, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
738
744
.
26.
Leamy
,
M. J.
, and
Wasfy
T. M.
, 2002, “
Transient and Steady-State Dynamic Finite Element Modeling of Belt-Drives
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
575
581
.
27.
Leamy
,
M.
, 2003, “
Dynamic Analysis of the Time-Varying Operation of Belt-Drives
,” in
Proc. of the ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering
Chicago, No. DECT2003/VIB-48346.
28.
Kong
,
L.
, and
Parker
R. G.
, 2003, “
Equilibrium and Belt-Pulley Vibration Coupling in Serpentine Belt Drives
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
739
750
.
29.
Kong
,
L.
, and
Parker
R. G.
, 2005, “
Steady Mechanics of Belt-Pulley Systems
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
25
34
.
30.
Ulsoy
,
A. G.
,
Whitesell
,
J. E.
, and
Hooven
,
M. D.
, 1985, “
Design of Belt-Tensioner System for Dynamic Stability
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
107
, pp.
282
290
.
31.
Genta
,
G.
, 1999,
Vibration of Structures and Machines: Practical Aspects
,
Springer
,
New York
.
You do not currently have access to this content.