The dynamic behavior of flexible rotor systems subjected to base excitation (support movements) is investigated theoretically and experimentally. The study focuses on behavior in bending near the critical speeds of rotation. A mathematical model is developed to calculate the kinetic energy and the strain energy. The equations of motion are derived using Lagrange equations and the Rayleigh-Ritz method is used to study the basic phenomena on simple systems. Also, the method of multiple scales is applied to study stability when the system mounting is subjected to a sinusoidal rotation. An experimental setup is used to validate the presented results.
Issue Section:
Technical Papers
1.
Ehrich
, F.
, 1992, Handbook on Rotordynamics
, McGraw-Hill
, New York.2.
Rao
, J. S.
, 1992, Rotordynamics
, Wiley
, New York.3.
Childs
, D.
, 1993, Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis
, Wiley
, New York.4.
Lalanne
, M.
, and Ferraris
, G.
, 1998, Rotordynamics Prediction in Engineering
, 2nd ed., Wiley
, New York.5.
Suarez
, L. E.
, Rohanimanesh
, M. S.
, and Singh
, M. P.
, 1992, “Seismic Response of Rotating Machines
,” Earthquake Eng. Struct. Dyn.
0098-8847, 21
, pp. 21
–36
.6.
Beley-Sayettat
, A.
, 1994, “Effet des Dissymétries et Effet Sismique en Dynamique des Rotors
,” Ph. D. Thèse, LMst–INSA-Lyon, France, p. 159
.7.
Gaganis
, B. J.
, Zisimopoulos
, A. K.
, Nikolakopoulos
, P. G.
, and Papadopoulos
, C. A.
, 1999, “Modal Analysis of Rotor on Piecewise Linear Journal Bearing Under Seismic Excitation
,” Trans. ASME, J. Vib. Acoust.
1048-9002, 121
(2
), pp. 190
–196
.8.
Ji
, Z.
, and Zu
, J. W.
, 1998, “Method of Multiple Scales for Vibration Analysis of Rotor-Shaft Systems With Non-Linear Bearing Pedestal Model
,” J. Sound Vib.
0022-460X, 218
(2
), pp. 293
–305
.9.
Duchemin
, M.
, Berlioz
, A.
, and Ferraris
, G.
, 2001, “Modélisation du Comportement Dynamique des Rotors Embarqués
,” XVème Congrès Français de Mécanique
, Sept. 3–5, Nancy, France.10.
Edwards
, S.
, Lees
, A. W.
, and Friswell
, M. I.
, 2000, “Experimental Identification of Excitation and Support Parameters of a Flexible Rotor-Bearings-Foundation System From a Single Run-Down
,” J. Sound Vib.
0022-460X, 232
(5
), p. 963
–992
.11.
Bonello
, P.
, and Brennan
, M. J.
, 2001, “Modelling the Dynamical Behaviour of a Supercritical Rotor on a Flexible Foundation Using the Mechanical Impedance Technique
,” J. Sound Vib.
0022-460X, 239
(3
), p. 445
–466
.12.
Chatelet
, E.
, Duchemin
, M.
, Berlioz
, A.
, and Ferraris
, G.
, 2004, “Etude de la Stabilité des Rotors par une Approche d’Echelles Multiples
,” XIVème Colloque Vibrations, Chocs et Bruits
, June 16
–18
, Lyon, France.13.
Ganesan
, R.
, and Sankar
, T. S.
, 1993, “Resonant Oscillations and Stability of Asymmetric Rotors
,” 56
, p. 131
–137
.14.
Ganesan
, R.
, and Sankar
, T. S.
, 1993, “Non-Stationary Vibrations of Rotor Systems With Non-Symmetric Clearance
,” 56
, p. 295
–301
.15.
Nayfeh
, A. H.
, 1993, Introduction to Perturbation Techniques
, Wiley
, New York.16.
Adams
, L. M.
, and Adams
, J. R.
, 2001, Rotating Machinery Vibration from Analysis to Troubleshooting
, Dekker
, New York.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.