The dynamic behavior of flexible rotor systems subjected to base excitation (support movements) is investigated theoretically and experimentally. The study focuses on behavior in bending near the critical speeds of rotation. A mathematical model is developed to calculate the kinetic energy and the strain energy. The equations of motion are derived using Lagrange equations and the Rayleigh-Ritz method is used to study the basic phenomena on simple systems. Also, the method of multiple scales is applied to study stability when the system mounting is subjected to a sinusoidal rotation. An experimental setup is used to validate the presented results.

1.
Ehrich
,
F.
, 1992,
Handbook on Rotordynamics
,
McGraw-Hill
, New York.
2.
Rao
,
J. S.
, 1992,
Rotordynamics
,
Wiley
, New York.
3.
Childs
,
D.
, 1993,
Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis
,
Wiley
, New York.
4.
Lalanne
,
M.
, and
Ferraris
,
G.
, 1998,
Rotordynamics Prediction in Engineering
, 2nd ed.,
Wiley
, New York.
5.
Suarez
,
L. E.
,
Rohanimanesh
,
M. S.
, and
Singh
,
M. P.
, 1992, “
Seismic Response of Rotating Machines
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
21
, pp.
21
36
.
6.
Beley-Sayettat
,
A.
, 1994, “
Effet des Dissymétries et Effet Sismique en Dynamique des Rotors
,” Ph. D. Thèse, LMst–INSA-Lyon, France, p.
159
.
7.
Gaganis
,
B. J.
,
Zisimopoulos
,
A. K.
,
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
, 1999, “
Modal Analysis of Rotor on Piecewise Linear Journal Bearing Under Seismic Excitation
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
121
(
2
), pp.
190
196
.
8.
Ji
,
Z.
, and
Zu
,
J. W.
, 1998, “
Method of Multiple Scales for Vibration Analysis of Rotor-Shaft Systems With Non-Linear Bearing Pedestal Model
,”
J. Sound Vib.
0022-460X,
218
(
2
), pp.
293
305
.
9.
Duchemin
,
M.
,
Berlioz
,
A.
, and
Ferraris
,
G.
, 2001, “
Modélisation du Comportement Dynamique des Rotors Embarqués
,”
XVème Congrès Français de Mécanique
, Sept. 3–5, Nancy, France.
10.
Edwards
,
S.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
, 2000, “
Experimental Identification of Excitation and Support Parameters of a Flexible Rotor-Bearings-Foundation System From a Single Run-Down
,”
J. Sound Vib.
0022-460X,
232
(
5
), p.
963
992
.
11.
Bonello
,
P.
, and
Brennan
,
M. J.
, 2001, “
Modelling the Dynamical Behaviour of a Supercritical Rotor on a Flexible Foundation Using the Mechanical Impedance Technique
,”
J. Sound Vib.
0022-460X,
239
(
3
), p.
445
466
.
12.
Chatelet
,
E.
,
Duchemin
,
M.
,
Berlioz
,
A.
, and
Ferraris
,
G.
, 2004, “
Etude de la Stabilité des Rotors par une Approche d’Echelles Multiples
,”
XIVème Colloque Vibrations, Chocs et Bruits
, June
16
18
, Lyon, France.
13.
Ganesan
,
R.
, and
Sankar
,
T. S.
, 1993, “
Resonant Oscillations and Stability of Asymmetric Rotors
,”
56
, p.
131
137
.
14.
Ganesan
,
R.
, and
Sankar
,
T. S.
, 1993, “
Non-Stationary Vibrations of Rotor Systems With Non-Symmetric Clearance
,”
56
, p.
295
301
.
15.
Nayfeh
,
A. H.
, 1993,
Introduction to Perturbation Techniques
,
Wiley
, New York.
16.
Adams
,
L. M.
, and
Adams
,
J. R.
, 2001,
Rotating Machinery Vibration from Analysis to Troubleshooting
,
Dekker
, New York.
You do not currently have access to this content.