In this paper, the large amplitude free vibration of a doubly clamped microbeam is considered. The effects of shear deformation and rotary inertia on the large amplitude vibration of the microbeam are investigated. To this end, first Hamilton’s principle is used in deriving the partial differential equation of the microbeam response under the mentioned conditions. Then, implementing the Galerkin’s method the partial differential equation is converted to an ordinary nonlinear differential equation. Finally, the method of multiple scales is used to determine a second-order perturbation solution for the obtained ODE. The results show that nonlinearity acts in the direction of increasing the natural frequency of the doubly clamped microbeam. Shear deformation and rotary inertia have significant effects on the large amplitude vibration of thick and short microbeams.

1.
Huang
,
X. M. H.
,
Zorman
,
C. A.
,
Mehregany
,
M.
, and
Roukes
,
M. L.
, 2003, “
Nanodevice Motion at Microwave Frequencies
,”
Nature (London)
0028-0836,
421
, pp.
496
496
.
2.
Turner
,
K. L.
,
Miller
,
S. A.
,
Hartwell
,
P. G.
,
MacDonald
,
N. C.
,
Strogatz
,
S. H.
, and
Adams
,
S. G.
, 1998, “
Five Parametric Resonances in a Microelectromechanical System
,”
Nature (London)
0028-0836,
396
, pp.
149
152
.
3.
Craighead
,
H. G.
, 2000, “
Nanoelectromechanical systems
,”
Science
0036-8075,
290
, pp.
1532
1535
.
4.
Scheible
,
D. V.
,
Erbe
,
A.
, and
Blick
,
R. H.
, 2002, “
Evidence of a Nanomechanical Resonator Being Driven into Chaotic Response via the Ruelle-Takens Route
,”
Appl. Phys. Lett.
0003-6951,
81
, pp.
1884
1886
.
5.
Zhang
,
W.
,
Baskaran
,
R.
, and
Turner
,
K. L.
, 2002, “
Effect of Cubic Nonlinearity on Autoparametrically Amplifed Resonant MEMS Mass Sensor
,”
Sens. Actuators, A
0924-4247,
102
, pp.
139
150
.
6.
Rugar
,
D.
, and
Grütter
,
P.
, 1991, “
Mechanical Parametric Amplification and Thermomechanical Noise Squeezing
,”
Phys. Rev. Lett.
0031-9007,
67
, pp.
699
702
.
7.
Carr
,
D. W.
,
Evoy
,
S.
,
Sekaric
,
L.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
, 2000, “
Parametric Amplification in a Torsional Microresonator
,”
Appl. Phys. Lett.
0003-6951,
77
, pp.
1545
1547
.
8.
Sarma
,
B. S.
,
Varadn
,
T. K.
, and
Parathap
,
G.
, 1988, “
Various Formulations of Large Amplitude Free Vibrations of Beams
,”
Comput. Struct.
0045-7949,
29
, pp.
959
966
.
9.
Singh
,
G.
,
Sharma
,
A. K.
, and
Rao
,
G. V.
, 1990, “
Large-Amplitude Free Vibrations of Beams-a Discussion on Various Formulations and Assumptions
,”
J. Sound Vib.
0022-460X,
142
, pp.
77
85
.
10.
Ozkaya
,
E.
, and
Pakdemirli
,
M.
, 1997, “
Nonlinear Vibrations of a Beam-Mass System under Different Boundary Conditions
,”
J. Sound Vib.
0022-460X,
199
, pp.
679
696
.
11.
Rao
,
B.
, 1992, “
Large-Amplitude Vibrations of Simply Supported Beams with Immovable Ends
,”
J. Sound Vib.
0022-460X,
155
, pp.
523
527
.
12.
Abramovich
,
H.
, 1992, “
Natural Frequencies of Timoshenko Beams under Compressive Axial Loads
,”
J. Sound Vib.
0022-460X,
157
, pp.
183
189
.
13.
Foda
,
M. A.
, 1999, “
Influence of Shear Deformation and Rotary Inertia on Nonlinear Free Vibration of a Beam with Pinned Ends
,”
Comput. Struct.
0045-7949,
71
, pp.
663
670
.
14.
Neyfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillation
(
Wiley Interscience
, New York).
15.
Neyfeh
,
A. H.
, 1981,
Introduction to Perturbation Techniques
(
Wiley Interscience
, New York).
16.
Abramovich
,
H.
, and
Elishakoff
,
I.
, 1987, “
Application of the Krein’s Method for Determination of Natural Frequencies of Periodically Supported Beam Based on Simplified Bresse-Timoshenko Equations
,”
Acta Mech.
0001-5970,
66
, pp.
35
59
.
You do not currently have access to this content.